
Linux / Unix

Date: 15 -10 -2010

Introduction

� Linus Torvalds – Creator of Linux

� Open Source Operating System

� Free Software

� Source Code Available

� Kernel can be customized to user’s needs

File structure

� /root , /home/users � Home directories

� /bin , /usr/bin , /usr/local/bin � user executables

� /media , /mnt �mount points

� /etc � configuration files

� /tmp �Temporary files

� /boot � Kernel , boot loaders

� /var , /srv, /usr � server data

� /proc , /sys � system information

� /lib, /lib64, /usr/lib , /usr/local/lib �shared libraries
� More info: http://www.comptechdoc.org/os/linux/commands/linux_crfilest.html

File system commands

� pwd - report your current directory

� cd <to where> - change your current directory

� ls <directory> -list contents of directory

� cp <old file> <new file> - copy

� mv <old file> <new file> - move (or rename)

� rm <file> -delete a file

� mkdir <new directory name> -make a directory

� rmdir <directory> -remove an empty directory

$ man command gives you help on that command.

Getting Recursive

� remove a directory and its contents:

$ rm -r <directory>

� copy a directory and its contents:

$ cp -r <directory>

File permissions.
� There are 3 kinds of users in linux : you (user), your friends (group) and everyone

else (others).

r - Read permissions
w - Write permissions

x - execute permissions
d - Directory
- File
$ ls –l

-rwxrw-r-- 1 santoshk santoshk 224 Oct 14 17:57 display_time.sh
drwxrwxr-x 2 santoshk santoshk 4096 Oct 14 19:19 test_dir

� For a file if x is set that user can execute the file
� For a directory if x is set that user can that user can enter in that directory.

Changing File Permissions and
Ownership

� Make a file readable to your friends:

$ chmod 765 <filename>

7 -> 111 -> rwx

6 -> 110 -> rw-

5 -> 101 -> r-x

-rwx rw- r-x 1 santoshk santoshk 224 Oct 14 17:57 <filename>

� Change who owns a file:

$ chown <user> <filename>

� Change to which group the file belongs:

$ chgrp <group> <filename>

touch

� Look at the full listing again:
$ $ $ $ lslslsls ----l .forwardl .forwardl .forwardl .forward

----rwrwrwrw----rrrr--------rrrr-------- 1 1 1 1 darindarindarindarin csuacsuacsuacsua 23 Jan 23 2009 .forward23 Jan 23 2009 .forward23 Jan 23 2009 .forward23 Jan 23 2009 .forward

� Each file has a date stamp of when it was modified.

� Use touch to set the timestamp to the current clock.

$ touch $ touch $ touch $ touch <filename><filename><filename><filename>

� Touch creates the file if it didn’t exist.

� You can only touch a file to which you can write.

Symbolic Links

� Reference to another file or directory

� use ln -s <old file> <second name> to create a symbolic
link to a file.

$ ln –s nfs.txt link.txt

$ ls -l

-rw-rw-r-- 1 santoshk santoshk 26823 Oct 14 19:01 nfs.txt

lrwxrwxrwx 1 santoshk santoshk 7 Oct 14 19:54 link.txt -> nfs.txt

� The first “l” tells you that it’s a symbolic link.

� Symbolic links can be used as if it were its target.

Working on multiple files

� some commands can work on many files at once:

$ rm file1 file2 file27

� Use * to match any number of unknown characters

$ rm file*

� Use ? to match one unknown character.

$ rm file?

(un)aliasing

� create shortcuts for yourself

$ alias ll=‘ls –la’

� Use alias with no arguments to discover current
aliases

$ alias

alias rm=‘rm –I’

alias ll=‘ls -l --color=tty’

Type “unalias rm” to remove alias.

PATH: a very important
shell variable
$ echo $PATH

/usr/lib/qt-s.3/bin :/usr/kerberos/bin :/usr/local/bin: /bin:/usr/bin
:/home/webteam/santoshk/bin

� If a program (like ls) is in one directory found in your path, then
typing it (~>ls <enter>) will execute it.

� Otherwise you can type the full absolute address to execute a
program (~>/usr/bin/ls <enter>)

Finding things in your PATH.

� Type “which <command>” to find the location of the
program which would run when you type <command>.

$ which grep

/bin/grep

� If you don’t remember a command nameif it was grep or
grepdiff, type “gre<TAB>” to get a list of commands that
starts with gre.

grefer grep-changelog grepjar

grep grepdiff

� when all else fails, use “find” to find a file.

$ find <start dir> -name “*.txt”

Other useful pre-defined shell
variables

� HOSTNAME Name of the computer

� HOME Home directory of the user

� USER your user login

� PWD current directory

� PATH defines list of directories to search

through when looking for a command to execute.

$ echo $HOSTNAME

cc1.tifr.res.in

Commands to see all the variables: env, set

Redirect output to a file with >

� If you type who at the prompt, you will get a list of
who is logged into the system.

� If you type who >f, a file named f will be
created and the standard output of who will be
placed in that file instead of to your screen.

� By default, who >f will overwrite the file f.

� Use who >>f to append to f rather than
overwriting it.

redirecting input from a file with <

� The program sort will sort its standard input and
then print it on standard out.

� To sort the lines of file1 and display:

sort < file1

� To sort the lines of file1 and save in file2:

sort < file1 > file2

Piping in unix |

� The output of a command can be piped to
another command for further processing

$ ls –l | wc –l

$ cat nfs.txt | more

shell and shell scripts.

� shell :- A shell is a piece of software that provides an interface for users of

an operating system which provides access to the services of a kernel.

To see current shell $ echo $SHELL

To change or use different shell $ /bin/sh or /bin/bash

� shell script :- Bunch of commands you’d like to automate. You can put them
on separate lines of a file. Then type “shell_name <filename>” to run the
script.

$ sh myscript.sh

� To make a script executable without giving shell name, the script should
have executable file permissions and first line of script should be
#!<path/shell name>

$./myscript.sh or $ path/myscript.sh

Simple shell script

#!/bin/sh

#Script to display date and time after every one second

#alias DSTAMP='date '\''+%d/%b/%Y %H:%M:%S'\'''

alias DSTAMP='date'

for N in `seq 1 8`

do

echo "Count $N: Now Date and Time is $(DSTAMP)"

sleep 1

done

Copy to remote machine : scp

� copy local to remote

$ scp <source file> user@machine:<path>

� copy remote to local

$ scp user@machine:<path> <source file>

-p Preserves mode, time stamps

-r Recursively copy entire directories.

-v Verbose mode.

Login using ssh

� ssh – remote login program

$ ssh –l santoshk cc1.tifr.res.in

ssh client in windows is putty. Download from
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

Date and Time : date

� date command prints or sets the system date
and time

$ date

Wed Oct 13 17:23:56 IST 2010

$ date '+%d/%b/%Y %H:%M:%S'

13/Oct/2010 17:22:01

Pattern extraction : grep

� grep is global / regular expression / print

$ grep <pattern> <filename>

$ grep apple fruitlist.txt

$ grep -i apple fruitlist.txt

-i Ignore case

-v Invert the sense of matching

Cutting the fields in a text file

� Cut is for extraction of line segments

$ cut –f 2,3 <filename>

$ cut –f 2,3 –d “:” <filename>

� awk is for processing text-based data

$ awk {‘print $2,$5’} <filename>

$ awk -F":" {‘ print $2,$5’} /etc/passwd

Stream editor : sed

� Sed utility parses text files and can apply textual
transformations

� special editor for modifying files automatically

$ sed -n '/Start_pattern/,/Stop_pattern /p' <filename>

$ sed -n '/<!--/,/-->/!p' test2.html

$ sed ‘s!Santosh Kyadari!Anil Naik!ig’ <filename>

$ sed -i ‘s!Santosh Kyadari!Anil Naik!ig’ <filename>

More commands

� sort <filename> - sort lines of text files

� uniq <filename> - report uniq lines

� tee - read from standard input and write to standard output and files

� tar – backup / archiving utility

� head - output the first part of files

� tail - output the last part of files

� cat - concatenate files and print on the standard output

� more – view the contents of a text file one screen at a time

� echo - display a line of text

vi editor

Introduction

� vi is text editor

� Original vi program was written by Bill Joy in 1976

� Use vi editor to:

� create text files

� edit text files

� The vi editor is not a text formatter like MS Word

� The current iteration of vi for Linux is called vim

Vi Improved

Starting vi

� Type vi <filename> at the shell prompt

� After pressing enter the command prompt
disappears and you see tilde(~) characters
on all the lines

� These tilde characters indicate that the line
is blank

Vi modes

� There are two modes in vi

� Command mode

� Input mode

� When you start vi by default it is in command
mode

� You enter the input mode through various
commands

� You exit the input mode by pressing the Esc
key to get back to the command mode

How to exit from vi

� First go to command mode
� press Esc There is no harm in pressing
Esc even if you are in command mode.
Your terminal will just beep and/or or
flash if you press Esc in command mode

� There are different ways to exit when
you are in the command mode

How to exit from vi
(comand mode)

� :q <enter> is to exit, if you have not made
any changes to the file

� :q! <enter> is the forced quit, it will discard
the changes and quit

� :wq <enter> is for save and Exit

� :x <enter> is same as above command

� The ! Character forces over writes, etc.
:wq!

� You can move around only when you are in
the command mode

� Arrow keys usually works(but may not)

� The standard keys for moving cursor are:

� h - for left

� l - for right

� j - for down

� k - for up

Moving Around

� w - to move one word forward

� b - to move one word backward

� $ - takes you to the end of line

� <enter> takes the cursor the the beginning
of next line

Moving Around

� - - (minus) moves the cursor to the first
character in the current line

� H - takes the cursor to the beginning of the
current screen(Home position)

� L - moves to the Lower last line

� M - moves to the middle line on the current
screen

Moving Around

� f - (find) is used to move cursor to a
particular character on the current line

� For example, fa moves the cursor from the
current position to next occurrence of ‘a’

� F - finds in the reverse direction

Moving Around

�) - moves cursor to the next sentence

� } - move the cursor to the beginning of next
paragraph

� (- moves the cursor backward to the
beginning of the current sentence

� { - moves the cursor backward to the
beginning of the current paragraph

Moving Around

� Control-d scrolls the screen down (half screen)

� Control-u scrolls the screen up (half screen)

� Control-f scrolls the screen forward (full screen)

� Control-b scrolls the screen backward (full
screen).

� xG- to go at x line

� G- takes you to bottom line of file

� gg- takes you to first line

Moving Around

� To enter the text in vi you should first switch
to input mode

� To switch to input mode there are several
different commands

� a - Append mode places the insertion point
after the current character

� i - Insert mode places the insertion point before
the current character

Entering text

� I - places the insertion point at the beginning of
current line

� o - is for open mode and places the insertion
point after the current line

� O - places the insertion point before the current
line

� R - starts the replace (overwrite) mode

Entering text

Editing text

� x - deletes the current character

� d - is the delete command but pressing
only d will not delete anything you need to
press a second key

� dw - deletes to end of word

� dd - deletes the current line

� d0 - deletes to beginning of line

The change command

� c - this command deletes the text
specified and changes the vi to input
mode. Once finished typing you should
press <Esc> to go back to command
mode

� cw - Change to end of word

� cc - Change the current line

� There are many more options

Structure of vi command

� The vi commands can be used followed by a
number such as
n<command key(s)>

� For example dd deletes a line 5dd will delete
five lines.

� This applies to almost all vi commands

� This how you can accidentally insert a
number of characters into your document

Undo and repeat command

� u - undo the changes made by editing
commands

� . (dot or period) repeats the last edit
command

Copy, cut and paste

� yy - (yank) copy current line to buffer

� nyy - Where n is number of lines

� p - Paste the yanked lines from buffer to
the line below

� P - Paste the yanked lines from buffer to
the line above

(the paste commands will also work after the
dd or ndd command)

vi Tricks

� Indent four lines: 4>>

� Will delete the character under the cursor,
and put it afterwards. In other words, it
swaps the location of two characters: xp

� Similar to xp, but swapping lines: ddp

Creating a shell script using vi

� Create a directory class

� Change into class

� vi myscript.sh

� inside the file enter following commands
clear

echo "==========="

echo "Hello World"

echo "==========="

sleep 3

clear

echo Host is $HOSTNAME

echo User is $USER

Creating a shell script using vi

� Save the file

� Change the permissions on myscript.sh
chmod 700 myscript.sh <enter>

� Now execute myscript.sh
myscript.sh <enter>

� Did the script run?

� Why not?
� Hint, think about absolute vs relative path

� Type echo $PATH to see your PATH variable

� Try this ./myscript.sh <enter>

� The ./ mean right here in this directory!

References

� Unix shell programming -by Yashwant Kanetkar

� Unix Concepts and Applications –by Sumitabha Das

� http://www.grymoire.com/Unix/Sed.html

� http://www.grymoire.com/Unix/Awk.html

� http://www.grymoire.com/Unix/Quote.html

� http://www.grymoire.com/Unix/Find.html

