Go beyond the standard anisotropic flow study at the LHC

You Zhou (周铀)

Niels Bohr Institute

FUND

Evolution in the Little Bang

You Zhou (NBI) @ India+ lecture

Elliptic flow

Spatial eccentricity in the initial state converted to momentum anisotropic particle distributions
J.Y. Ollitrault, PRD46 (1992) 229 S. Voloshin, Y. Zhang, ZPC70 (1996) 665

- known as elliptic flow
- reflect initial eccentricity and transport properties of QGP

From initial anisotropy to anisotropic flow

Two-particle azimuthal correlations

What we want to measure:

 $v_n = \langle \cos n(\varphi - \Psi_n) \rangle$ Ψ_n is unknown in experiment

What we hope to get from 2-particle azimuthal correlation

$$\langle \langle \cos n(\varphi_1 - \varphi_2) \rangle \rangle = \langle \langle \cos n \left[(\varphi_1 - \Psi_n) - (\varphi_2 - \Psi_n) \right] \rangle \rangle$$

$$= \langle \langle \cos n(\varphi_1 - \Psi_n) \cdot \cos n(\varphi_2 - \Psi_n) \rangle \rangle + \langle \langle \sin n(\varphi_1 - \Psi_n) - \sin n(\varphi_2 - \Psi_n) \rangle \rangle$$

$$= \langle v_n^2 \rangle$$

Get the RMS value of v_n distribution without knowing Ψ_n

What we actually get from 2-particle azimuthal correlation in experiment

 $\langle \langle \cos n(\varphi_1 - \varphi_2) \rangle \rangle = \langle v_n^2 + \delta_2 \rangle \longrightarrow \text{Nonflow (resonance decay, jets etc)} \\ \delta_2 \sim 1/M$

Multi-particle correlation/cumulant

Flow analysis from multiparticle azimuthal correlations

Nicolas Borghini, Phuong Mai Dinh, and Jean-Yves Ollitrault Phys. Rev. C **64**, 054901 – Published 25 September 2001

Example: 4-particle cumulant

$$c_{n}\{4\} = \langle \langle \cos n(\varphi_{1} + \varphi_{2} - \varphi_{3} - \varphi_{4}) \rangle - \langle \langle \cos n(\varphi_{1} - \varphi_{3}) \rangle \rangle \langle \langle \cos n(\varphi_{2} - \varphi_{4}) \rangle \rangle - \langle \langle \cos n(\varphi_{1} - \varphi_{4}) \rangle \rangle \langle \langle \cos n(\varphi_{2} - \varphi_{3}) \rangle \rangle$$

$$= \langle v_{n}^{4} + 4v_{n}^{2}\delta_{2} + 2\delta_{2}^{2} + \delta_{4} \rangle - 2 \langle (v_{n}^{2} + \delta_{2})^{2} \rangle = \langle -v_{n}^{4} + \delta_{4} \rangle = -v_{n} \{4\}^{4}$$
Nonflow (of 4-particles) $\delta_{4} \sim 1/M^{3}$

Using multi-particle cumulant, one can largely suppress nonflow contaminations

$$\begin{split} v_n \{2\}^2 &= v_n^2 + \sigma_v^2 + \delta_n^2 \\ v_n \{4\}^2 &\approx v_n^2 - \sigma_v^2 \\ v_n \{6\}^2 &\approx v_n^2 - \sigma_v^2 \\ v_n \{8\}^2 &\approx v_n^2 - \sigma_v^2 \end{split}$$
 (For Gaussian fluctuations and $\sigma_v \ll v_n$
$$v_n \{8\}^2 &\approx v_n^2 - \sigma_v^2 \end{split}$$

Anisotropic flow at the LHC

ALICE, Physics Letters B784 (2018) 82

Flow measurements at the top LHC energies agree with hydrodynamic predictions

• The Quark-Gluon Plasma behaves like a perfect fluid

1 Pi

UNIVERSITY OF

How does v_n fluctuate

$P(v_n)$ and $P(\varepsilon_n)$

- Investigating $p(v_2)$ with multi-particle cumulants
 - Ultra-higher order cumulants e.g. v_2 {10}{12}{14}{16} is implemented for HL-LHC,
 - Possibility to construct a more precise p.d.f. with higher moments

PID flow

ALICE, arXiv: 2206.04587, accepted by JHEP

* v_2 {2} and v_2 {4} for $\pi \pm$, K^{\pm} , K^{0}_S , p(p), $\Lambda(\Lambda)$, φ , $\Xi(\Xi)$, $\Omega(\Omega)$

• Low pT : mass ordering

OF

UNIVERSITY

- Intermediate pT: baryon-meson grouping
- Quantitatively described by CoLBT model with hydro+coal+frag (not shown)

NCQ scaling

ALICE, arXiv: 2206.04587, accepted by JHEP

* Number of constituent quark (NCQ) scaling is not observed neither in $v_2{2}/n_q$ nor $v_2{4}/n_q$ at the LHC

• Is NCQ scaling to simplified to probe the partonic collectivity?

UNIVERSITY

COPENHAGEN

OF

• Can one use NCQ scaling to search for the critical point at RHIC-BES?

PID flow fluctuations

• Flow fluctuations with v_n {2} and v_n {4}

UNIVERSI

COPENHAGEN

 \mathbf{E} Characteristic \mathbf{p}_{T} and particle species dependence of $v_2{4}/v_2{2}$ and $F(v_2)$

Contributions not only from initial eccentricity • fluctuations (pT independent) but also system dynamic evolutions

ALICE, arXiv: 2206.04587, accepted by JHEP

Flow vector fluctuations

Initial symmetry planes

How does ψ_n

fluctuate

$$v_n\{2\} = \frac{\langle v_n(p_{\rm T}) \ v_n \cos n[\Psi_n(p_{\rm T}) - \Psi_n] \rangle}{\sqrt{\langle v_n^2 \rangle}}$$
$$v_n[2] = \sqrt{\langle v_n^2(p_{\rm T}) \rangle}$$

UNIVERSITY OF

COPENHAGEN

$$\frac{v_n\{2\}}{v_n[2]} = \underbrace{\langle v_n(p_T^a) \ v_n \cos n[\Psi_n(p_T^a) - \Psi_n] \rangle}_{\sqrt{\langle v_n^2(p_T^a) \rangle} \sqrt{\langle v_n^2 \rangle}} \rightarrow \text{Flow angle fluctuations}$$

◊ v₂{2}/v₂[2] < 1, indicates presence of flow angle and magnitude fluctuations</p>
 ♦ How can we disentangle the two contributions and quantify each of them?

U. Heinz etc, PRC87, 034913 (2013) F. G. Gardim etc, PRC87, 031901(R) (2013)

Flow angle and magnitude fluctuations

 New observable to measure flow angle fluctuations:

$$\begin{split} F(\Psi_n^a, \Psi_n) &= \frac{\langle \langle \cos[n(\varphi_1^a + \varphi_2^a - \varphi_3 - \varphi_4)] \rangle \rangle}{\langle \langle \cos[n(\varphi_1^a + \varphi_2 - \varphi_3^a - \varphi_4)] \rangle \rangle} \\ &= \frac{\langle v_n^2(p_{\rm T}^a) \ v_n^2 \cos 2n[\Psi_n(p_{\rm T}^a) - \Psi_n] \rangle}{\langle v_n^2(p_{\rm T}^a) v_n^2 \rangle} \\ &\approx \langle \cos 2n[\Psi_n(p_{\rm T}^a) - \Psi_n)] \rangle \end{split}$$

 $F(\Psi_n^a, \Psi_n) < 1$ indicates p_T -dependent flow angle fluctuations

New observable to measure
 flow magnitude fluctuations:

 $\frac{\langle\langle\cos n(\varphi_1^a + \varphi_2 - \varphi_3^a - \varphi_4)\rangle\rangle}{\langle\langle\cos n(\varphi_1^a - \varphi_3^a)\rangle\rangle\langle\langle\cos n(\varphi_2 - \varphi_4)\rangle\rangle} = \frac{\langle v_n^2(p_{\rm T}^a) v_n^2\rangle}{\langle v_n^2(p_{\rm T}^a)\rangle\langle v_n^2\rangle}$

 $p_{\rm T}\text{-integrated baseline: } \langle v_n^4\rangle/\langle v_n^2\rangle^2$

Deviations from baseline indicate the $p_{\rm T}$ -dependent flow magnitude fluctuations

arXiv:2211.13651

Nuclear Experiment

[Submitted on 24 Nov 2022]

Transverse momentum decorrelation of the flow vector in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

Emil Gorm Nielsen, You Zhou

Observation of flow angle and flow magnitude fluctuations

ALICE, <u>arXiv: 2206.04574</u> iEBE-VISHNU: W. Zhao etc, EPJC77 (2017) 645 MUSIC: P. Bozek etc, PRC105 (2022) 034904

♦ Large deviations from unity of both A_2^f and $M_2^f \rightarrow$ First observation of flow angle and flow magnitude fluctuations!

Comparison with theoretical models suggest observables are sensitive to initial state and the QGP properties.

Symmetric Cumulant

Flow with 2-particle correlation:

 $\langle \langle \cos(n\varphi_1 - n\varphi_2) \rangle \rangle = \langle v_n^2 \rangle$

Flow with 4-particle correlation:

 $\langle \langle \cos(n\varphi_1 + n\varphi_2 - n\varphi_3 - n\varphi_4) \rangle \rangle = \langle v_n^4 \rangle$

Flow with 4-particle cumulant:

 $\langle \langle \cos(n\varphi_1 + n\varphi_2 - n\varphi_3 - n\varphi_4) \rangle \rangle - \langle \langle \cos n(\varphi_1 - \varphi_3) \rangle \rangle \langle \langle \cos n(\varphi_2 - \varphi_4) \rangle \rangle - \langle \langle \cos n(\varphi_1 - \varphi_4) \rangle \rangle \langle \langle \cos n(\varphi_2 - \varphi_3) \rangle \rangle = c_n \{4\}$

PHYSICAL REVIEW C 89, 064904 (2014)

Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations

Ante Bilandzic,¹ Christian Holm Christensen,¹ Kristjan Gulbrandsen,¹ Alexander Hansen,¹ and You Zhou^{2,3} ¹Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark ²Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands ³Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands

Symmetric cumulants:

$$\begin{split} &\langle \cos(m\varphi_1 + n\varphi_2 - m\varphi_3 - n\varphi_4) \rangle \rangle_c \\ &= \langle \langle \cos(m\varphi_1 + n\varphi_2 - m\varphi_3 - n\varphi_4) \rangle \rangle - \langle \langle \cos[m(\varphi_1 - \varphi_2)] \rangle \rangle \, \langle \langle \cos[n(\varphi_1 - \varphi_2)] \rangle \rangle \\ &= \langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \, \langle v_n^2 \rangle \, . \end{split}$$

By construction not sensitive to:

- non-flow effects, due to usage of 4-particle cumulant
- inter-correlations of various symmetry planes (ψ_n and ψ_m correlations)

(Normalized) Symmetric Cumulant

Normalized Symmetric cumulants:

 $NSC(m,n) = \frac{SC(m,n)}{\langle v_{\mathrm{m}}^2 \rangle \langle v^2 \rangle}$

ALICE, PRL117, 182301 (2016)

UNIVERSITY OF

- Comparison of SC and Normalized SC (NSC) to hydrodynamic calculations
 - Although hydro describes v_n fairly well, there is not a single centrality for which a given η/s parameterization describes simultaneously SC and NSC -> tighter constraints!
 - NSC(3,2) measurements provide direct access into the initial conditions (despite details of systems evolution)
 - what is the general correlation between any order of v_n^k and v_m^p and the correlations among multiple flow coefficients

$P(v_m, v_n, v_k, \ldots)$

PHYSICAL REVIEW C 103, 024913 (2021)

Generic algorithm for multiparticle cumulants of azimuthal correlations in high energy nucleus collisions

> Zuzana Moravcova⁽⁵⁾, Kristjan Gulbrandsen⁽⁵⁾, and You Zhou^{(5)†} Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark

Mixed harmonic cumulants with 4-particles

$$\operatorname{MHC}(v_m^2, v_n^2) = \operatorname{SC}(m, n) = \left\langle v_m^2 \, v_n^2 \right\rangle - \left\langle v_m^2 \right\rangle \, \left\langle v_n^2 \right\rangle$$

Mixed harmonic cumulants with 6-particles

$$\begin{split} \text{MHC} \left(v_{2}^{4}, v_{3}^{2} \right) &= \langle \langle e^{i \left(2\varphi_{1} + 2\varphi_{2} + 3\varphi_{3} - 2\varphi_{4} - 2\varphi_{5} - 3\varphi_{6} \right)} \rangle_{c} \\ &= \langle v_{2}^{4} v_{3}^{2} \rangle - 4 \langle v_{2}^{2} v_{3}^{2} \rangle \langle v_{2}^{2} \rangle - \langle v_{2}^{4} \rangle \langle v_{3}^{2} \rangle \\ &+ 4 \langle v_{2}^{2} \rangle^{2} \langle v_{3}^{2} \rangle. \\ \text{MHC} \left(v_{2}^{2}, v_{3}^{4} \right) &= \langle \langle e^{i \left(2\varphi_{1} + 3\varphi_{2} + 3\varphi_{3} - 2\varphi_{4} - 3\varphi_{5} - 3\varphi_{6} \right)} \rangle_{c} \\ &= \langle v_{2}^{2} v_{3}^{4} \rangle - 4 \langle v_{2}^{2} v_{3}^{2} \rangle \langle v_{3}^{2} \rangle - \langle v_{2}^{2} \rangle \langle v_{3}^{4} \rangle \\ &+ 4 \langle v_{2}^{2} \rangle \langle v_{3}^{2} \rangle^{2}. \\ \text{MHC} \left(v_{2}^{2}, v_{3}^{2}, v_{4}^{2} \right) &= \langle \langle e^{i \left(2\varphi_{1} + 3\varphi_{2} + 4\varphi_{3} - 2\varphi_{4} - 3\varphi_{5} - 4\varphi_{6} \right)} \rangle_{c} \\ &= \langle v_{2}^{2} v_{3}^{2} v_{4}^{2} \rangle - \langle v_{2}^{2} v_{3}^{2} \rangle \langle v_{4}^{2} \rangle - \langle v_{2}^{2} v_{4}^{2} \rangle \langle v_{3}^{2} \rangle \\ &- \langle v_{3}^{2} v_{4}^{2} \rangle \langle v_{2}^{2} \rangle + 2 \langle v_{2}^{2} \rangle \langle v_{3}^{2} \rangle \langle v_{4}^{2} \rangle. \end{split}$$

- Multi-particle mixed harmonic cumulants
 - correlation between v_m^k, v_n^l and v_p^q
 - correlation between v_m^k and v_n^l

Mixed harmonic cumulants with 8-particles

 $MHC(v_2^6, v_3^2) = \langle \langle e^{i(2\varphi_1 + 2\varphi_2 + 2\varphi_3 + 3\varphi_4 - 2\varphi_5 - 2\varphi_6 - 2\varphi_7 - 3\varphi_8)} \rangle \rangle_c$ $= \langle v_2^6 v_3^2 \rangle - 9 \langle v_2^4 v_3^2 \rangle \langle v_2^2 \rangle - \langle v_2^6 \rangle \langle v_3^2 \rangle$ $-9 \langle v_2^4 \rangle \langle v_2^2 v_3^2 \rangle - 36 \langle v_2^2 \rangle^3 \langle v_3^2 \rangle$ $+18\langle v_2^2\rangle\langle v_3^2\rangle\langle v_2^4\rangle+36\langle v_2^2\rangle^2\langle v_2^2\,v_3^2\rangle.$ $\mathrm{MHC}(v_2^4, v_3^4) = \langle \langle e^{i(2\varphi_1 + 2\varphi_2 + 3\varphi_3 + 3\varphi_4 - 2\varphi_5 - 2\varphi_6 - 3\varphi_7 - 3\varphi_8)} \rangle \rangle_c$ $= \langle v_2^4 v_3^4 \rangle - 4 \langle v_2^4 v_3^2 \rangle \langle v_3^2 \rangle$ $-4\langle v_2^2 v_3^4\rangle\langle v_2^2\rangle-\langle v_2^4\rangle\langle v_3^4\rangle$ $-8 \langle v_2^2 v_3^2 \rangle^2 - 24 \langle v_2^2 \rangle^2 \langle v_3^2 \rangle^2$ $+4 \langle v_{2}^{2} \rangle^{2} \langle v_{3}^{4} \rangle + 4 \langle v_{2}^{4} \rangle \langle v_{3}^{2} \rangle^{2}$ $+32\langle v_{2}^{2}\rangle\langle v_{3}^{2}\rangle\langle v_{2}^{2}v_{3}^{2}\rangle.$ $\mathrm{MHC}(v_2^2, v_3^6) = \langle \langle e^{i(2\varphi_1 + 3\varphi_2 + 3\varphi_3 + 3\varphi_4 - 2\varphi_5 - 3\varphi_6 - 3\varphi_7 - 3\varphi_8)} \rangle \rangle_c$ $= \langle v_2^2 v_3^6 \rangle - 9 \langle v_2^2 v_3^4 \rangle \langle v_3^2 \rangle - \langle v_3^6 \rangle \langle v_2^2 \rangle$ $-9\langle v_3^4\rangle\langle v_2^2 v_3^2\rangle - 36\langle v_2^2\rangle\langle v_3^2\rangle^3$ $+18 \langle v_{2}^{2} \rangle \langle v_{3}^{2} \rangle \langle v_{3}^{4} \rangle + 36 \langle v_{3}^{2} \rangle^{2} \langle v_{2}^{2} v_{3}^{2} \rangle.$

UNIVERSITY OF COPENHAGEN

Correlations between v_m^2 , v_n^2 , v_k^2 ,...

ALICE, PLB818 (2021) 136354

- ♦ Non-zero value of $nMHC(v_2^2, v_3^2, v_4^2)$ in Pb-Pb collisions
 - Highly non-trivial correlations among three flow coefficients

UNIVERSITY OF COPENHAGEN

ψ_n correlations: $P(\psi_m, \psi_n, \psi_k)$

Flow with 2-particle correlation:

 $\langle \langle \cos(n\varphi_1 - n\varphi_2) \rangle \rangle = \langle v_n^2 \rangle$

How do ψ_n and

 ψ_m correlate

Flow with 4-particle correlation:

 $\left\langle \left\langle \cos(n\varphi_1 + n\varphi_2 - n\varphi_3 - n\varphi_4) \right\rangle \right\rangle = \left\langle v_n^4 \right\rangle$

How about 3-particle correlation: $\langle \langle \cos(k\varphi_1 + m\varphi_2 - n\varphi_3) \rangle \rangle$

If k+m != n, $\langle \cos(k\varphi_1 + m\varphi_2 - n\varphi_3) \rangle \rangle = 0$

If k+m = n, $\langle \cos(k\varphi_1 + m\varphi_2 - n\varphi_3) \rangle = \langle v_k v_m v_n \cos(k\Psi_k + m\Psi_m - n\Psi_n) \rangle$

-> Example: $\langle \langle \cos(2\varphi_1 + 2\varphi_2 - 4\varphi_3) \rangle \rangle = \langle v_2^2 v_4 \cos(4\Psi_2 - 4\Psi_4) \rangle$ -> Correlations between Ψ_2 and Ψ_4

ψ_n correlations: $P(\psi_m, \psi_n, \psi_k)$

ALICE, PLB773 (2017) 68, JHEP05 (2020) 085

• ρ_{mn} , probes the symmetry plane correlations

UNIVERSITY OF

- No energy dependence between measurements except $\rho_{6,222}$
- Among many models, TRENTo model does not work well in $\rho_{n,\,mk}$

EKRT, PRC93, 024907 (2016) TRENTo, EPJC77 (2017) 645 AMPT, EPJC77 (2017) 645 IP-Glasma, PRC95, 064913 (2017)

Bayesian analyses with simple vn

J.E. Bernhard etc, Nature Physics, 15, 1113 (2019)

JETSCAPE, Phys. Rev. Lett. 126, 242301 (2021)

`**₹"**₽⊒ `````

UNIVERSITY OF

COPENHAGEN

Bayesian analysis with more flow observables

You Zhou (NBI) @ India+ lecture

UNIVERSITY OF

IC: state of the art (?)

You Zhou (NBI) @ India+ lecture

**** \\

UNIVERSITY OF

[pT] - Vn correlations

Shape of the fireball: Anisotropic flow

\bullet Size of the fireball: radial flow, [$p_{\rm T}$]

Initial geometry and fluctuations of shape and size

\clubsuit Final state: correlation between v_n and p_T

$$\rho(v_n^2, [p_T]) = \frac{cov(v_n^2, [p_T])}{\sqrt{var(v_n^2)}\sqrt{var([p_T])}}$$
P. Bozek etc, PRC96 (2017) 014904

 $\approx \quad cov(v_n^2, [p_T]): \textbf{3-particle correlation (2 azimuthal, I [p_T])} \\ \left\langle \frac{\sum_{i \neq j \neq k} w_i w_j w_k e^{in\phi_i} e^{-in\phi_j} (p_{T,k} - \langle \langle p_T \rangle \rangle)}{\sum_{i \neq j \neq k} w_i w_j w_k} \right\rangle_{evt} \\ \approx \quad \sqrt{var(v_n^2): \textbf{2} and \textbf{4-particle azimuthal correlations}} \\ = v_n \{2\}^4 - v_n \{4\}^4$

$$\approx \sqrt{var([p_{T}])} : 2\text{-particle [p_T] correlations} \\ \left\langle \frac{\sum_{i \neq j} w_i w_j (p_{T,i} - \langle \langle p_T \rangle) (p_{T,j} - \langle \langle p_T \rangle)}{\sum_{i \neq j} w_i w_j} \right\rangle_{\text{evt}}$$

ρ₂ in Pb-Pb

ALICE, PLB 834 (2022) 137393 v-USPhydro, PRC103 (2021) 2, 024909 IP-Glasma, PRC102, 034905 (2020) JETSCAPE, PRL126, 242301 (2021) Privation communication Trajectum, PRL126, 202301 (2021) Privation communication

TRENTo-IC based calculations all show strong centrality dependence, negative values for centrality >40%

• v-USPhydro, Trajectum, JETSCAPE

UNIVERSITY OF

- The difference is from the initial stage: geometric effects or initial momentum anisotropy (CGC)?
 - No significant difference between the "full IP-Glasma" and "FSE only" for the presented centralities
 - Difference not from initial momentum anisotropy and confirm the different geometric effects

Difference in IP-Glasma and TRENTo: potential explanations

- Sensitive to the nucleon width parameter (size of nucleon)
 - IP-Glasma ~ 0.4; v-USPhydro ~ 0.5; Trajectum~0.7; JETSCAPE (T_RENTo) ~ 1.1
 - w(IP-Glasma) < w(v-USPhydro) < w(Trajectum) < w(JETSCAPE)
 - New constraints on the nucleon size

Different types of thickness functions

• T_RENTo $\left(\frac{T_A^p + T_B^p}{2}\right)^{1/p}$ with p≈0 $\sqrt{T_A T_B}$ IP-Glasma $T_A T_B$ type

Nuclear structure at relativistic energies

You Zhou (NBI) @ India+ lecture

Probe deformation of ¹²⁹Xe at the LHC

- Significant v₂ enhancement in central Xe-Xe collisions, originated from large deformation
- Help to constrain β_2

Probe triaxial structure of Xe

B. Bally etc, Phys. Rev. Lett. 128 (2022) 8, 082301

17

UNIVERSI

COPENHAGEN

* Better agreement between LHC data and calculations with $\gamma = 26.93^{\circ}$

- Indication of triaxial structure of ¹²⁹Xe at high energy collisions at the LHC
- New connection of high-energy heavy-ion physics to low-energy nuclear (structure) physics

O-O collisions at LHC Run 3

O-O projection studies

ALI-SIMUL-480238

UNIVERSITY OF

COPENHAGEN

1"P1

More on NS at RHIC and the LHC

BNL

RIKEN BNL Research Center Physics Opportunities from the RHIC Isobar Run

This workshop will be held virtually. January 25-28, 2022

EMMI

GSI

^eEMMI Rapid Reaction Task Force: "Nuclear physics confronts relativistic collisions of isobars" (part 1/2) 30 May 2022 to 3 June 2022 Heidelberg University

GSI

CEA Saclay

INT

You Zhou (NBI) @ India+ lecture

link

link

link

Small system

(peripheral Pb-Pb) ~100 charged particles produced

nature physics

JUNE 2017 VOL 13 NO 6 w.nature.com/naturephysics

Stranger and stranger says ALICE

ELECTRON GASES Spin and charge part ways

QUANTUM SIMULATION Hamiltonian learning

TOPOLOGICAL PHOTONICS Optical Weyl points and Fermi arcs

For many years, the proton-proton collision was used as "*reference data*" where no QGP is expected ... But !

pp

(high multiplicity pp) ~100 charged particles produced

CERN yellow report

CERN-LPCC-2018-07 February 26, 2019

Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams

Report from Working Group 5 on the Physics of the HL-LHC, and Perspectives at the HE-LHC

Observable or effect	Pb–Pb	p–Pb (high mult.)	pp (high mult.)
Low $p_{\rm T}$ spectra ("radial flow")	yes	yes	yes
Intermediate $p_{\rm T}$ ("recombination")	yes	yes	yes
Particle ratios	GC level	GC level except Ω	GC level except Ω
Statistical model	$\gamma_s^{\rm GC} = 1, 10-30\%$	$\gamma_s^{ m GC} \approx 1,20-40\%$	MB: $\gamma_s^{\rm C} < 1, 20-40\%$
HBT radii $(R(k_{\rm T}), R(\sqrt[3]{N_{\rm ch}}))$	$R_{\rm out}/R_{\rm side}\approx 1$	$R_{\rm out}/R_{\rm side} \lesssim 1$	$R_{\rm out}/R_{ m side} \lesssim 1$
Azimuthal anisotropy (v_n)	$v_1 - v_7$	$v_1 - v_5$	$v_2 - v_4$
(from two particle correlations)			
Characteristic mass dependence	$v_2 - v_5$	v_2, v_3	v_2
Directed flow (from spectators)	yes	no	no
Charge-dependent correlations	yes	yes	yes
Higher-order cumulants	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6 \approx 8 \approx LYZ$ "	"4≈6"
(mainly $v_2\{n\}, n \ge 4$)	+higher harmonics	+higher harmonics	
Symmetric cumulants	up to $SC(5,3)$	only $SC(4,2), SC(3,2)$	only $SC(4,2)$, $SC(3,2)$
Non-linear flow modes	up to v_6	not measured	not measured
Weak η dependence	yes	yes	not measured
Factorization breaking	yes $(n = 2, 3)$	yes $(n = 2, 3)$	not measured
Event-by-event v_n distributions	n = 2 - 4	not measured	not measured
Direct photons at low $p_{\rm T}$	yes	not measured	not observed
Jet quenching through dijet asymmetry	yes	not observed	not observed
Jet quenching through R_{AA}	yes	not observed	not observed
Jet quenching through correlations	yes (Z-jet, γ -jet, h-jet)	not observed (h-jet)	not measured
Heavy flavor anisotropy	yes	yes	not measured
Quarkonia production	suppressed [†]	suppressed	not measured

A lot should be done, but have not been done

How does v_n fluctuate

How does ψ_n fluctuate

How do vn and vm correlate

How do ψ_n and ψ_m correlate

LHC Run3 enables new possibilities (with many times more data)

Multi-particle correlations across systems

- Discovery of flow in small collisions systems (proton-lead, proton-proton collisions)
- Challenges two paradigms at once!

- How far down in system size does the "Standard model of heavy ions" (hydrodynamics) remain?
- Can the standard tool for minimum bias pp (PYTHIA) remain standard?

Similarity in PID flow

Flow of identified particles, using long-range di-hadron correlations, in p-Pb and pp collisions

- **Mass ordering** in low p_T region (described by hydrodynamics)
- **Baryon-meson** v_2 splitting at intermediate p_T region by > 3σ

UNIVERSITY OF

COPENHAGEN

Characteristic flow behaviours in Pb-Pb collisions, have been observed in p-Pb and pp collisions

Partonic flow in small systems

Flow of identified particles in p-Pb and pp collisions

UNIVERSITY

COPENHAGEN

- Mass ordering in low pt region (described by hydrodynamics)
- Baryon-meson v₂ splitting at intermediate p_T region by > 3σ
- Model without quark coalescence cannot qualitatively describe trends seen in data
- Discovery of partonic (quark & gluon) flow in small systems -> a small droplet of QGP

New possibilities

- Constrain the initial conditions of small systems
- Turn on/off the QGP matter ?

ALICE flow results (further reading)

2

arXiv: 2211.04384

UNIVERSITY

COPENHAGEN

OF

CERN-EP-2022-227 27 October 2022

The ALICE experiment: A journey through QCD

The	The quark–gluon plasma and its properties					
2.1	Macro	roscopic system properties and QGP thermodynamics				
	2.1.1	Centrality of nucleus-nucleus collisions	33			
	2.1.2	Charged-particle multiplicity density at midrapidity	35			
	2.1.3	Determination of the initial energy density	37			
	2.1.4	Temperature of the system	39			
	2.1.5	Size and lifetime of the system	42			
	2.1.6	Conclusions	47			
2.2	QGP evolution and its dynamical properties					
	2.2.1	First ALICE results of anisotropic flow	48			
	2.2.2	Identified hadron spectra, radial flow, and kinetic freeze-out temperatures	50			
	2.2.3	Hydrodynamic descriptions of global observables	52			
	2.2.4	Identified hadron anisotropic flow	55			
	2.2.5	Symmetric Cumulants	57			
	2.2.6	Non-linear flow modes and flow vector fluctuations	58			
	2.2.7	Charge dependent and independent two-particle correlations	59			
	2.2.8	Polarisation of hyperons and vector mesons	61			
	2.2.9	Conclusions	64			

3	High	n-density QCD effects in proton-proton and proton-nucleus collisions	147
	3.1	Event classification for small collision systems	147
	3.2	Dynamics and hadrochemistry of particle production	150
	3.3	Collective effects: anisotropic flow	156
	3.4	Charmonium and bottomonium suppression in p-Pb collisions	162
	3.5	Searches for jet quenching in small systems	165
	3.6	Conclusions	168

4	The initial state of the collision		170
	4.1	Electroweak-boson measurements	171
	4.2	Photon-induced processes in heavy-ion collisions	172
	4.3	Multiplicity and flow measurements	177

Initial Stages 2023

The VII-th International Conference on the Initial Stages of High-Energy Nuclear Collisions : Initial Stages 2023

Abstract submission deadline: March 10th, 2023

50+ junior supports (encourage all students and young postdocs to attend)

- Hotels in Copenhagen during the entire conference for FREE
- Reduced conference fee

New positions at NBI (Copenhagen)

INDEPENDENT RESEARCH FUND DENMARK

My research group expects to hire **1** Postdoc and 2 PhD students after this summer (Will call for applicants this spring) If you have interests, don't hesitate to contact me: <u>you.zhou@cern.ch</u>

Backup

$P(v_n)$ from multi-particle cumulants of v_n

UNIVERSITY OF

COPENHAGEN

Multi-particle $\ensuremath{\textit{correlations}}$ of single harmonic v_n

$$\langle \langle \cos(n\phi_1 - n\phi_2 + n\phi_3 - n\phi_4) \rangle \rangle = \langle v_n^4 \cos(n\Phi_n - n\Phi_n + n\Phi_n - n\Phi_n) \rangle = \langle v_n^4 \rangle$$

Multi-particle *cumulants* of single harmonic v_n

$$\langle \langle \cos(n\phi_1 - n\phi_2 + n\phi_3 - n\phi_4) \rangle \rangle_c = \langle \cos(n\phi_1 - n\phi_2 + n\phi_3 - n\phi_4) \rangle$$
$$- \langle \langle \cos(n\phi_1 - n\phi_2) \rangle \rangle \langle \langle \cos(n\phi_3 - n\phi_4) \rangle \rangle$$
$$- \langle \langle \cos(n\phi_1 - n\phi_4) \rangle \rangle \langle \langle \cos(n\phi_2 - n\phi_3) \rangle$$
$$= \langle v_n^4 \rangle - 2 \langle v_n^2 \rangle^2$$

$$\begin{split} v_n\{2\} &= \sqrt[2]{\langle v_n^2 \rangle}, \\ v_n\{4\} &= \sqrt[4]{2\langle v_n^2 \rangle^2 - \langle v_n^4 \rangle}, \\ v_n\{6\} &= \sqrt[6]{\langle v_n^6 \rangle - 9\langle v_n^2 \rangle \langle v_n^4 \rangle + 12\langle v_n^2 \rangle^3}, \\ v_n\{8\} &= \sqrt[8]{\langle v_n^8 \rangle - 16\langle v_n^2 \rangle \langle v_n^6 \rangle - 18\langle v_n^4 \rangle^2 + 144\langle v_n^2 \rangle^2 \langle v_n^4 \rangle - 144\langle v_n^2 \rangle^4}. \end{split}$$

More results in smaller colliding systems

- Search for the initial momentum anisotropy (IMA) in smaller colliding systems
 - Peripheral Pb-Pb collisions
 - Slope changes for $N_{ch} \sim 100$ for data and ~ 20 for IP-Glasma calculations
 - Both AMPT and IP-Glasma+hydro predicts slope changes -> not unique signature of IMA?
 - pp collisions:

UNIVERSITY OF

- Decreasing trend with increasing N_{ch} , results are consistent with the one in Pb-Pb
- AMPT generates stronger anti-correlations, PYTHIA predicted a wrong N_{ch} dependence
- Non-flow is a main challenge, many important studies by J. Jia, C. Zhang, J. Nagle etc

ρ₃ in Pb-Pb

ALICE, PLB 834 (2022) 137393 v-USPhydro, PRC103 (2021) 2, 024909 IP-Glasma, PRC102, 034905 (2020) JETSCAPE, PRL126, 242301 (2021) Privation communication Trajectum, PRL126, 202301 (2021) Privation communication

- ρ_3 values:
 - positive
 - have a modest centrality dependence for the presented centralities,
 - better described by IP-Glasma,
 - = TRENTo predicts negative ρ_3 , getting worse for Trajectum and JETSCAPE calculations
- * model shows that ρ_3 is not sensitive to β_2
- Difference of full IP-Glasma and FSE only, indication of potential contributions from IMA in peripheral?

Higher-order correlations

The first measurement of higher-order [pT], v2 and v3 correlations
P. Bozek etc, PRC104 (2021) 1, 014905

$$\rho(v_{\rm m}^2, v_{\rm n}^2, [p_{\rm T}]) = \frac{C(v_{\rm m}^2, v_{\rm n}^2, [p_{\rm T}])}{\sqrt{\operatorname{Var}(v_{\rm m}^2)}\sqrt{\operatorname{Var}(v_{\rm n}^2)}\sqrt{c_k}} - \frac{\langle v_{\rm m}^2 \rangle}{\sqrt{\operatorname{Var}(v_{\rm m}^2)}} \cdot \rho_{\rm n} - \frac{\langle v_{\rm n}^2 \rangle}{\sqrt{\operatorname{Var}(v_{\rm n}^2)}} \cdot \rho_{\rm m} - \frac{\langle [p_{\rm T}] \rangle}{\sqrt{\operatorname{Var}(v_{\rm m}^2)}} \cdot \frac{SC(m, n)}{\sqrt{\operatorname{Var}(v_{\rm m}^2)}\sqrt{\operatorname{Var}(v_{\rm m}^2)}}$$

- \clubsuit the first ρ_{23} measurement is non-zero
 - negative for the presented centrality
 - anti-correlations between two flow coefficients and [pT]
- φ₂₃ from IP-Glasma and v-USPhydro are different for centrality >40%
 - Weaker centrality dependence of full IP-Glasma while strong dependence for FSE only, indication?
 - More simulations are needed
- Not conclusive on which model works better due to sizeable uncertainties from model calculations

Event-by-event vn fluctuations

COPENHAGEN

Minor difference from IS models

- Despite the precision of the data, the differences of ε_n{4}/ε_n{2} from various initial state models are minor
 - The peripheral collision should not be used as $v_n \propto \varepsilon_n$ does not hold

You Zhou (NBI) @ India+ lecture

• •

Correlations between v_2^k and v_3^L

• First measurement of correlations between higher order moments of v_2 and v_3

- characteristic -, +, signs observed for 4-, 6- and 8-particle cumulants of mixed harmonic
- Final state results quantitatively reproduced by the initial state correlations

COPENHAGEN

 Experimental data provides direct constraints on the correlations of higher order moments of eccentricity coefficients

Various initial state models

Credits: G. Giacalone

– "sharp" models: IP-GLASMA and TRENTo 2016

[Schenke, Shen, Tribedy 2005.14682] [Bass, Bernhard, Moreland 1605.03954]

Nucleons have a width of ~0.5fm (trento), 3 sub-nucleons with size ~0.1fm (IP-Glasma). Trento is used for the entropy density at the beginning of hydro.

- "fat" models: TRENTo 2019 and JETSCAPE

[Bass, Bernhard, Moreland Nature Phys. 15 (2019)] [JETSCAPE Collaboration 2011.01430, 2010.03928] [Parkkila, Onnerstad, Kim 2106.05019]

The Trento parametrization is now used for the energy density at tau=0+. There is no substructure. The nucleon width is now ~1fm. Very smooth profiles.

– "bumpy" models: TRENTo 2018 and Trajectum

[Bass, Bernhard, Moreland **1808.02106**] [Nijs, van der Schee, Gürsoy, Snellings **2010.15130**, **2010.15134**]

The Trento parametrization is the energy density at tau=0+. Substructure is included: 4-6 constituents with width ~0.4fm. Profiles with some lumpiness.

Initial Stages 2023

50+ junior supports (encourage all students and young postdocs to attend)

- Hotels in Copenhagen during the entire conference for FREE
- Reduced conference fee