Collider Physics I

Ashutosh Kotwal Duke University

TIFR September 20, 2023

Why Build Accelerators? From Atoms to Quarks

• Scattering of probe particles off matter to investigate substructure, i.e. "look inside"

• Rutherford did it, shooting ∈ particles at a gold foil, to tell us the structure of the atom (1911)

Quantum mechanics: $\Delta r \sim h / \Delta p$

- Quark constituents of nucleons established in high energy electron scattering experiments at SLAC, 1966-1978
 - Point-like particles explain high scattering rate at large energy and angle

HEP Units

Energy is measured in eV, the energy picked up by an electron in going through 1V potential.

$$1 \text{ GeV} = 1.602 \times 10^{-10} \text{ Joules}$$

Momentum is measured in GeV/c

Mass is measured in GeV/c²

so
$$M^2c^4 = E^2 - c^2p^2$$
 can be calculated
with 'c=1'

$$M(proton) = 938 \text{ MeV/c}^2$$

 $M(electron) = 0.511 \text{ MeV/c}^2$

$$\gamma$$
 = 959 for a 900 GeV Proton β = 0.9999994

Example: The proton energy in the Tevatron is 960 GeV

There are 10^{12} protons in the machine.

$$E_{begin} = 960 \text{ GeV}*10^{12} = 1.7 \text{ x } 10^5 \text{ J}$$

More on Units

The speed of light is $3 \times 10^8 \text{ m/sec}$

For a particle travelling at 'c' $1 \text{ nsec } \sim 1 \text{ foot.}$

Example:

B meson as a lifetime in rest frame of τ = 1.5 x 10⁻¹² sec and mass of ~ 5 GeV/c²

$$N(t) = N_0 e^{-t/\tau}$$
 in rest frame

a 50 GeV B meson has $\gamma = 10$ and time-dilated lifetime of $t = \gamma \tau \sim 1.5 \times 10^{-11}$ sec

It will travel \sim 4.5 mm on average.

Even more on Units

Quantum mechanics gives particles wavelengths related to their energy

$$\lambda = hc/E$$

A particle needs E > hc/r to probe size scale r.

$$hbar = 197 MeV - fm$$

- \Box 1 fm = 10⁻¹⁵ m
- Nucleii are 1-10 fm in size. This is the range of the strong force.
- Particles of E > 200 MeV can probe nuclear scales
- □ 900 GeV proton can probe $r \cong 197 \text{ MeV} - \text{fm} / 900 \text{ GeV}$ $\sim 2 \times 10^{-19} \text{ m}$

- Success # 1: discovery of 6 quarks and 6 leptons
- 12 fundamental matter particles (and their antimatter counterparts) fit neatly into an elegant mathematical framework

Quarks

$$u < 1 \text{ GeV}$$
 $c \sim 1.5 \text{ GeV}$ $t \sim 175 \text{ GeV}$ $d < 1 \text{ GeV}$ $s < 1 \text{ GeV}$ $b \sim 4.5 \text{ GeV}$

But note the intriguing pattern of mass values; not explained:

Leptons

$$\nu_e < 1 \text{ eV} \quad \nu_{\mu} < 0.17 \text{ MeV} \quad \nu_{\tau} < 24 \text{ MeV}$$

e 0.5 MeV μ 106 MeV τ 1.8 GeV

• The "charm quark" (c) discovered at SLAC in 1974

• The heaviest lepton, "τ" was also discovered at SLAC in 1975

• The heaviest "top quark" (t) discovered at Fermilab in 1995

• The next heaviest, "bottom quark" (b) was also discovered at Fermilab in 1977

- Success # 2: a really elegant framework for *predicting* the nature of fundamental forces
 - matter particles (quarks and leptons) transform in *curved* internal spaces
 - The equations of motion *predict* terms that describe particle interactions with force fields

 Analogous to the Coriolis and Centrifugal forces generated in rotating frames of reference

• Notion of symmetry of equations under "gauge transformations" not just a theoretical success: beautifully confirmed by large amount of experimental particle physics measurements, for

Electromagnetic force

$$\psi(x) \longrightarrow e^{i\phi(x)}\psi(x)$$

- Weak force (radioactivity)

- Strong (nuclear) force

Why the Higgs Field?

- This highly successful theory predicts that particles should be massless!
 - Obviously not true in nature
 - Not just "Dark Matter", we did not know the origin of "Visible Matter"

• Theory rescued by postulating a new "Higgs" field, which

permeates all space

 A sticky field, particles moving through space scatter off the Higgs field, thereby *appearing* to be massive

[Image proposed by David Miller, University College London]

Why the Higgs Boson?

- Proof of the concept: superconductivity
 - Normally massless photon (quantum of electromagnetic force) becomes massive in a superconductor
- Conclusion: our vacuum is not empty (i.e. absence of all fields)
 - There is a non-zero expectation value of Higgs field in the vacuum", behaving like a superconductor!

Crossing the Energy Threshold for Discoveries

Energy scale associated with "superconducting" vacuum ~ 1 TeV

LEP (~200 GeV electron-positron collider at CERN)
Tevatron (2 TeV proton-antiproton collider at Fermilab) and
LHC ($7 \rightarrow 8 \rightarrow 13 \rightarrow 14$ TeV proton-proton collider at CERN) looked for the "Higgs Boson"

LHC announced "a" Higgs boson on 4th July 2012!