
Collider Physics III: Beyond the Higgs Boson

Ashutosh Kotwal Duke University

Collisions That Changed The World

CagleCartoons.com

TIFR September 26, 2023

Spontaneous Symmetry Breaking

• 2008 Nobel Prize in Physics

"for the discovery of the mechanism of spontaneously broken symmetry in subatomic physics"

Yoichiro Nambu

• How to think of the vacuum as an "electroweak condensed state"?

Spontaneous Symmetry Breaking

• Is the mechanism of Electroweak Symmetry Breaking, the Standard Model Higgs mechanism?

Origin of the Higgs Concept

• Prediction of "forces" based on the idea of gauge invariance in Quantum Field Theory

$$-\Psi \rightarrow \int^{EB\xi(Y)} \Psi (B \ominus PB) I = KOAA = \Box EAK \land AA = EAK$$
$$\in J\Theta$$

• $\partial KIEA (PUIEAK \land A \in \Sigma) UIAEMAIJKIEEOA_{U} (\in H \in B \oplus B J \in J O)$

$$- \partial_{\mu} \Psi \rightarrow D_{\mu} \Psi = (\partial_{\mu} - i g A_{\mu}) \Psi$$
$$- A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \xi$$

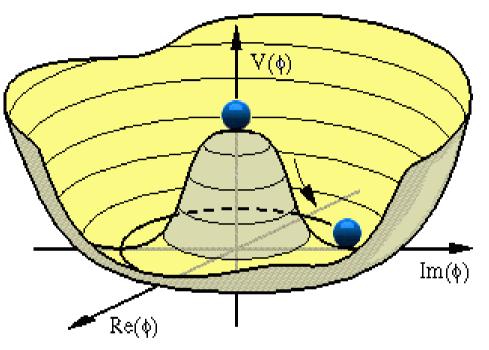
• Gauge-invariant Field Strength tensor $F_{\mu\nu}$

$$-\mathsf{F}_{\mu\nu} = \partial_{\mu}\mathsf{A}_{\nu} - \partial_{\nu}\mathsf{A}_{\mu}$$

- For gauge transformation in the internal space described by the (Abelian) U(1) group
- Kinetic energy associated with e.g. "electromagnetic field"

$$F F^{\mu\nu}$$

Origin of the Higgs Concept


• Quantum of gauge field must remain massless to preserve gauge invariance

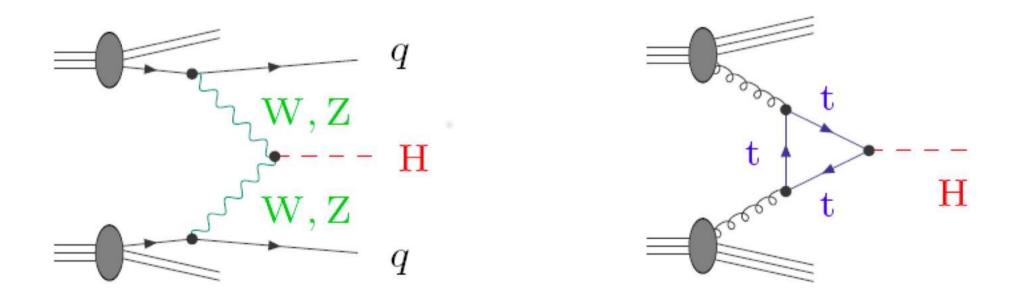
 $-\int \Theta \Pi \mathbf{J} \mathbf{\Xi} \quad I^{2} \mathbf{A}_{\mu} \mathbf{A}^{\mu} \mathbf{ME} \mathbf{\Lambda} \mathbf{F} \mathbf{H} \mathbf{J} \mathbf{J}$

- ∆IEAKBMEJ (EJEAK UAK€EI J (JYMJEE J KIELOGDAAE JO) UEAI (BKJIE)
- But fails spectacularly for the weak force mediated by *W* and *Z* bosons, which have masses of ~80 GeV and ~90 GeV respectively
- Ideas from Laudau, Ginzburg, Anderson, Nambu, Goldstone, Englert, Brout, Higgs, Kibble, Guralnik, Hagan, Salam, Weinberg, Glashow...
 - Introduce a new scalar field ϕ (III) $|\mu$ IBBO $| \in J \Theta$) with appropriate quantum numbers under the SU(2)_L and U(1)_Y gauge groups
 - Introduce an ad-hoc non-linear potential $V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$

Spontaneous Symmetry Breaking of Gauge Symmetry

• postulate of scalar Higgs field which develops a vacuum expectation value via spontaneous symmetry breaking (SSB)

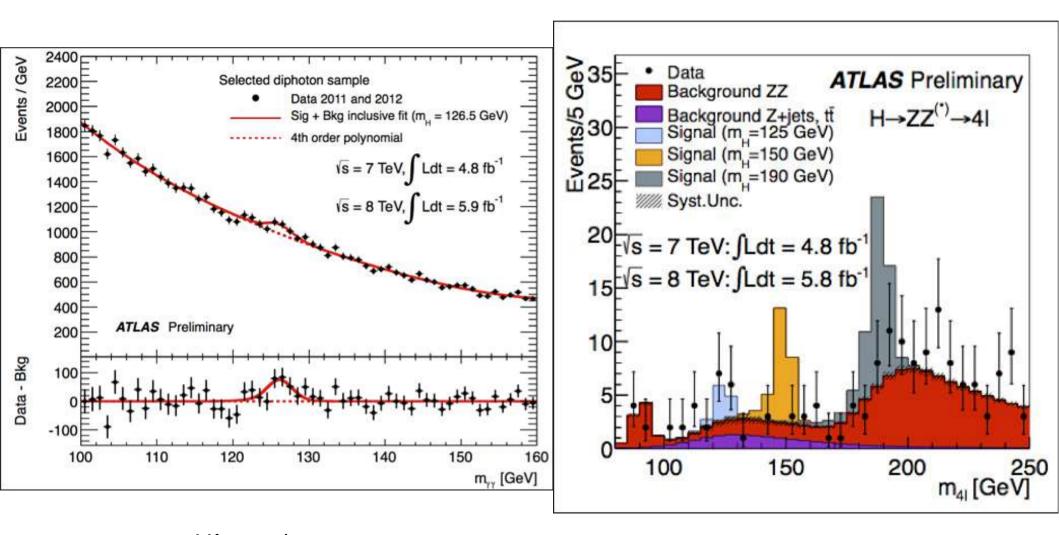
- Phase transition \rightarrow vacuum state possesses non-trivial quantum numbers
 - Dynamical origin of this phase transition is not known
 - Implies vacuum is a condensed, superconductor-like state
- Renormalizability of QFT with SSB of non-Abelian Gauge Symmetry proven by 't Hooft and Veltman A. V. Kotwal, TIFR 26/9/23


Some Key Features of Electroweak Standard Model

- Gauge groups are $SU(2)_{L}$ and $U(1)_{V}$ (Glashow)
- Fermions are in the fundamental representations of these groups
- Higgs vacuum expectation value (v) breaks $SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$ (Weinberg, Salam)
- Efficient solution for generating mass terms for electroweak gauge bosons ...
 - Higgs kinetic energy term $(D_{\mu} \phi)^2$ contains $g^2 W_{\mu} W^{\mu} \phi^2$ term
 - After SSB, $W_{\mu}W^{\mu}\phi^2 \rightarrow W_{\mu}W^{\mu}v^2 + \dots$ generating gauge boson mass terms with mass ~ gv
- ...AND fermions

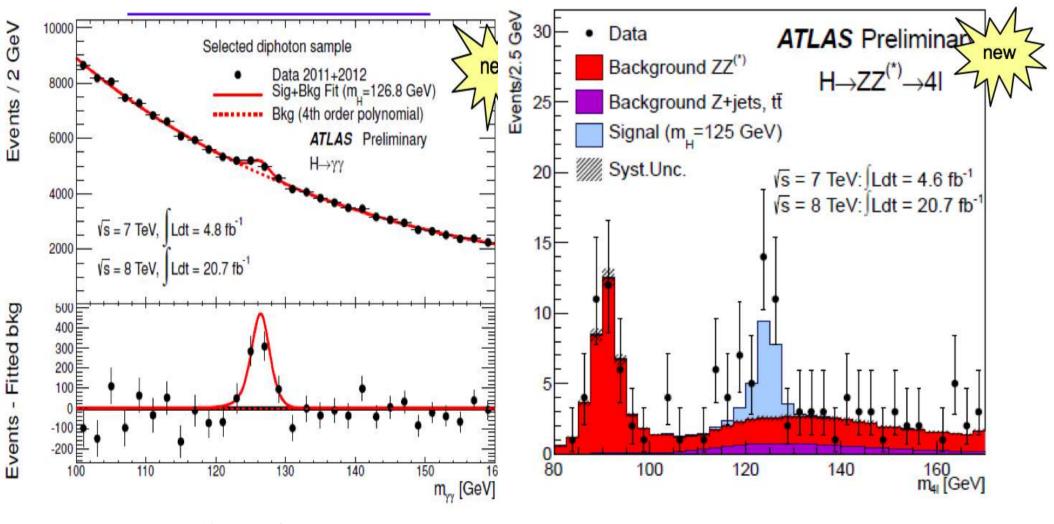
- $y \phi \Psi_L \Psi_R \rightarrow y v \Psi_L \Psi_R^+$... after SSB, where y is an ad-hoc "Yukawa" dimensionless parameter and $yv \sim$ fermion mass

Some Key Properties of Electroweak Standard Model


- Electroweak boson couplings to the Higgs field excitations are specified:
 - eg. $(D_{\mu}\phi)^2$ contains $g^2 W_{\mu}W^{\mu}\phi^2$ term $\rightarrow g^2 W_{\mu}W^{\mu}(v+h)^2$
 - Quanta of the "radial" excitation *h* are the Higgs bosons

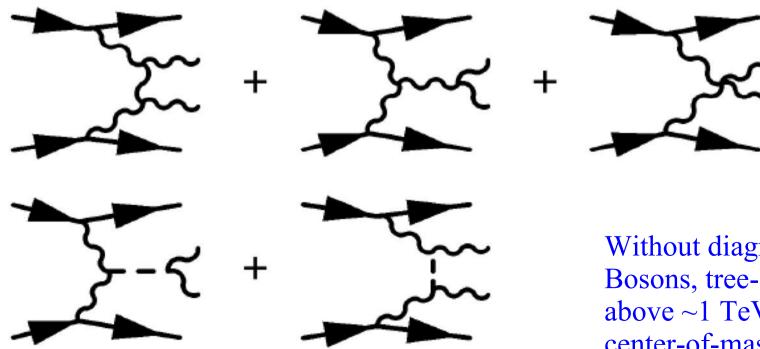
• Fermions' Yukawa couplings to Higgs boson *h* are proportional to fermion mass

$$- y \phi \Psi_{L} \Psi_{R} \rightarrow y v \Psi_{L} \Psi_{R}^{+} y h \Psi_{L} \Psi_{R}$$


Higgs Discovery Plots from ATLAS

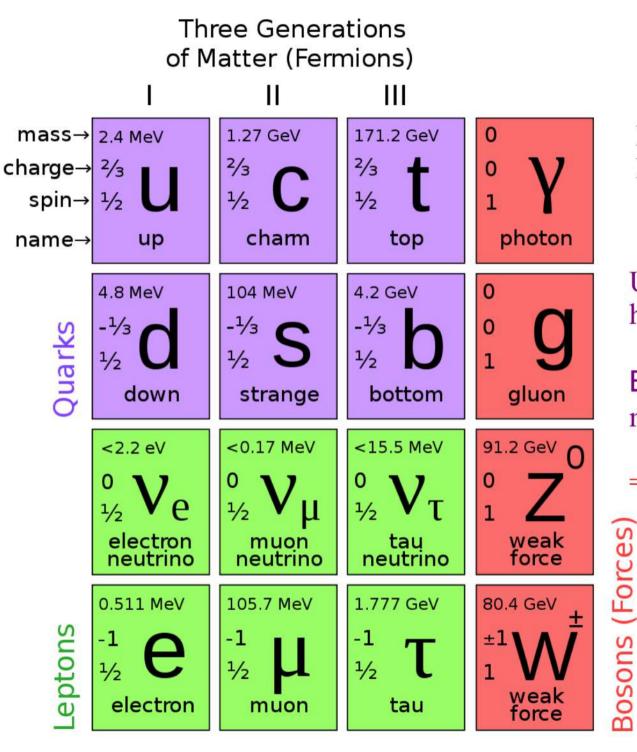
Higgs $\rightarrow \gamma \gamma$

Higgs $\rightarrow ZZ$


Higher-Significance Higgs Signal Plots from ATLAS

Higgs $\rightarrow ZZ$

Higgs Boson Properties to be Measured (Precisely)


- Higgs boson spin & parity J^P = 0⁺ by measuring decay angular distributions
- Measure all couplings as precisely as possible to test Standard Model
- To be confirmed that longitudinally-polarized vector boson scattering amplitudes do not violate tree-level unitarity

Without diagrams involving Higgs Bosons, tree-level unitary violated above ~1 TeV in vector-boson center-of-mass energy

Is SM Higgs enough?

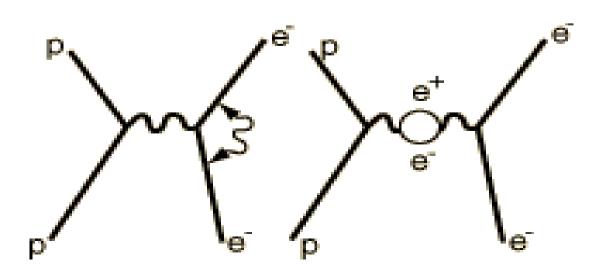
Some open questions

A. V. Kotwal, TIFR 26/9/23

Large range of fermion masses \rightarrow Large range of Yukawa couplings

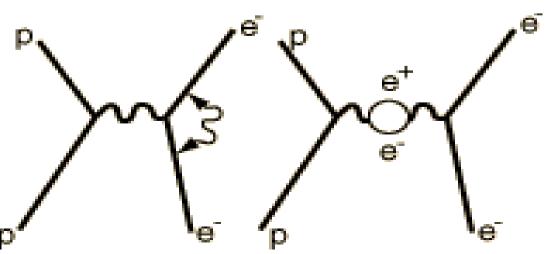
Up-type and down-type fermions have different quantum numbers...

But ϕ and ϕ^{\dagger} have the appropriately matching quantum numbers

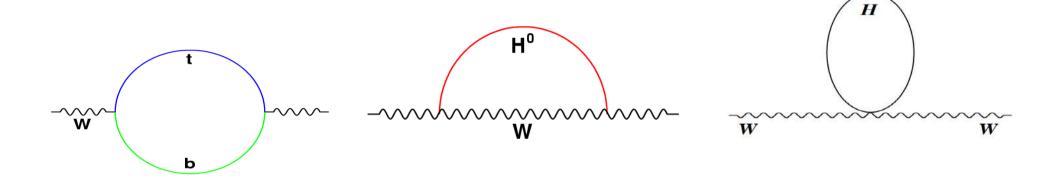

=> single Higgs field suffices in SM

What if two separate Higgs fields were used for up-type and down-type fermions ?

Ratio of vacuum expectation Values ~ t/b, c/s mass ratio => Two-Higgs Doublet Model


Importance of Quantum Loops

Importance of Quantum Loops – Example I


Importance of Quantum Loops – Example I

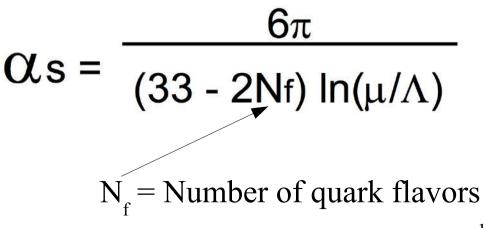
- Willis Lamb (Nobel Prize 1955) measured the difference between energies of ${}^{2}S_{\nu_{2}}$ and ${}^{2}P_{\nu_{2}}$ states of hydrogen atom
 - 4 micro electron volts difference compared to few electron volts binding energy
 - States should be degenerate in energy according to tree-level calculation
- Harbinger of vacuum fluctuations to be calculated by Feynman diagrams containing quantum loops
 - Modern quantum field theory of electrodynamics followed (Nobel Prize 1965 for Schwinger, Feynman, Tomonaga)

Test of Quantum Loops at High Energy – Example II

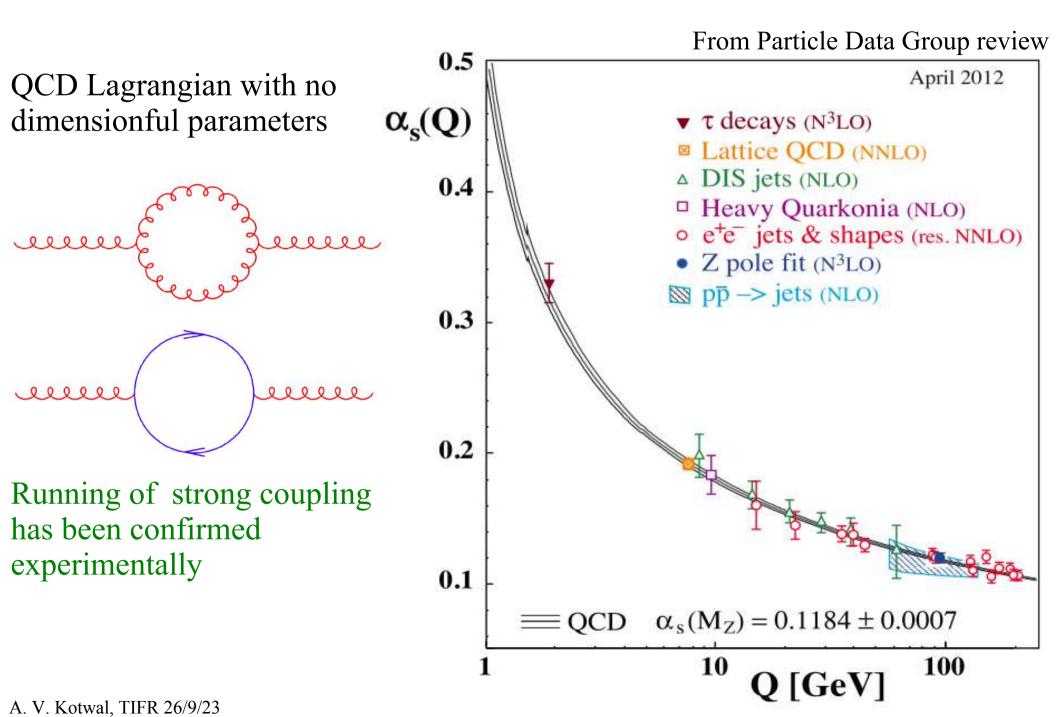
• W boson mass: radiative corrections due to heavy quark and Higgs loops

Motivate the introduction of the ρ parameter: $M_W^2 = \rho [M_W(\text{tree})]^2$ with the predictions $\Delta \rho = (\rho 21) \gamma \int_{top}^{top} 2 \text{ and } \Delta \rho \gamma \ln M_H$

• The top quark mass, the W boson mass and the mass of the Higgs boson provides a stringent test of the standard model at loop level A. V. Kotwal, TIFR 26/9/23

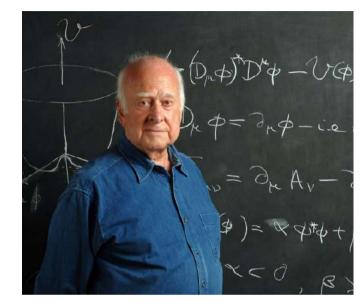

Example III - Asymptotic Freedom in QCD

QCD Lagrangian with no dimensionful parameters should be scale-invariant BUT quantum loops induce a distance (or momentum) scale dependence !

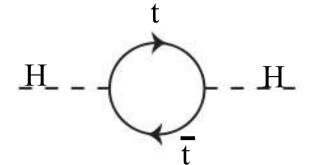


Running of coupling constant induces an energy scale $\Lambda \sim 0.2$ GeV where coupling becomes large

 $\alpha_{\Delta} \rightarrow 0$ as $\mu \rightarrow \infty$: asymptotic freedom (2004 Nobel Prize for Gross, Wilczek, Politzer) A. V. Kotwal, TIFR 26/9/23



Example III - Test of QCD Quantum Loops at High Energy


Particle Physics after Higgs Boson – Higgs loops

- What does the discovery of the Higgs boson imply for the next big questions in particle physics?
- Higgs mechanism solves the problem of electroweak symmetry breaking in a self-consistent and efficient manner.....

Peter Higgs

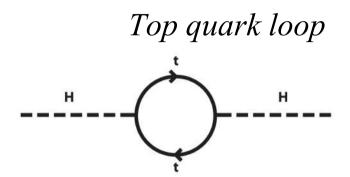
- But it creates a new problem
 - Quantum radiative corrections to the Higgs boson mass are very large and uncontrolled....
 - a worrisome side-effect that cannot be resolved within the quantum field theory containing only the Higgs
 FR 26/0/2 field

Why is the Higgs Boson so Light?

For the first time, we have additive corrections to parameters which are quadratically divergent

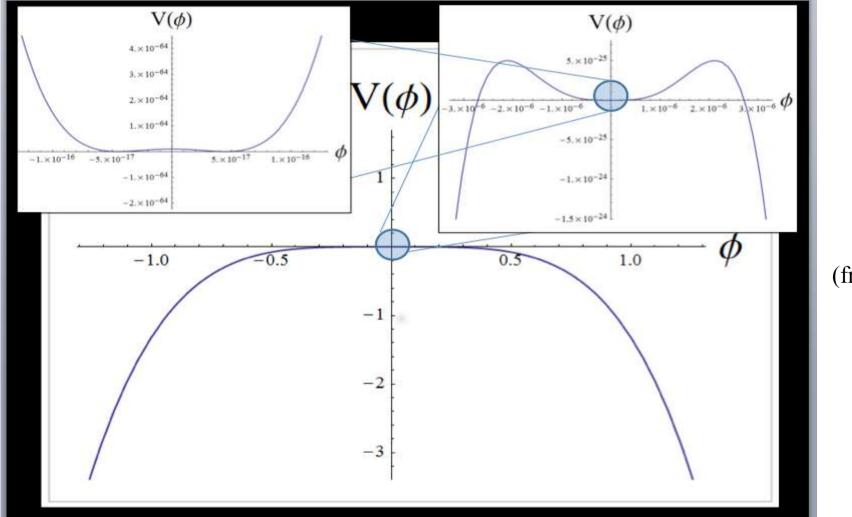
The Higgs boson ought to be a very heavy particle, naturally

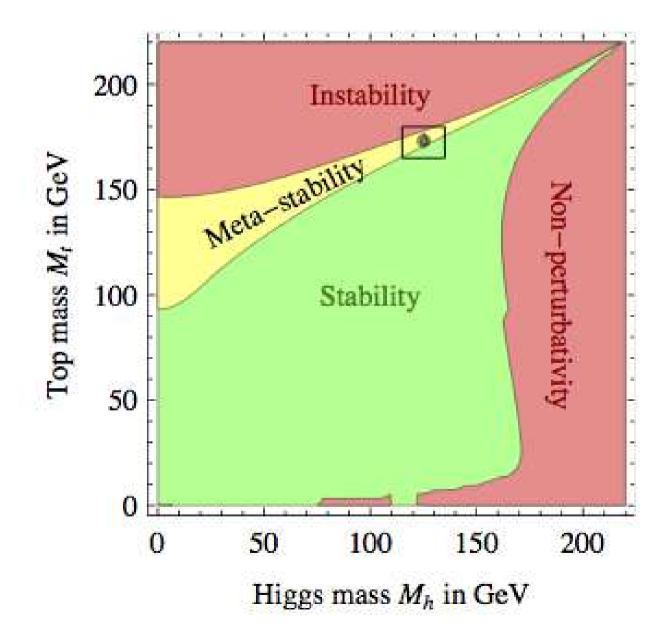
However, observed $m_{_{\rm H}} << \Lambda$


Fine-tuning Problem of Higgs Boson Mass

- The divergent integral in this quantum loop must be regulated by a high-momentum cutoff, Λ , which could be the gravitational Planck energy scale $M_{planck} \sim 10^{19} \text{ GeV}$
 - Loop calculation gives Higgs boson mass correction $\sim M^2_{_{planck}}$

• Therefore need extreme "fine-tuning" of bare lagrangian parameters at high energy




Radiative Corrections to Higgs Self-Coupling

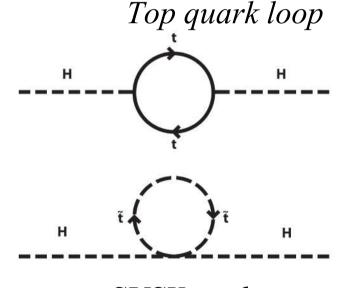
• $\lambda |\phi|^4$ receives radiative corrections from Higgs and top-quark loops

Stability of Electroweak Vacuum

Higgs boson puzzles

- First fundamental (?) scalar field to be discovered
- Spontaneous symmetry breaking by development of a VeV
 - But VeV is induced parametrically by ad-hoc Higgs potential, no dynamics
- Parameters of Higgs potential are not stable under radiative corrections
 - First time that the radiative correction to a particle mass is additive and quadratically divergent
 - Gauge boson masses are protected by gauge invariance
 - Fermion masses are protected by chiral symmetry of massless fermions
- Single scalar Higgs field is a strange beast, compared to fermions and gauge bosons
- Additional symmetries and/or dynamics strongly motivated by Higgs discovery

SuperSymmetry

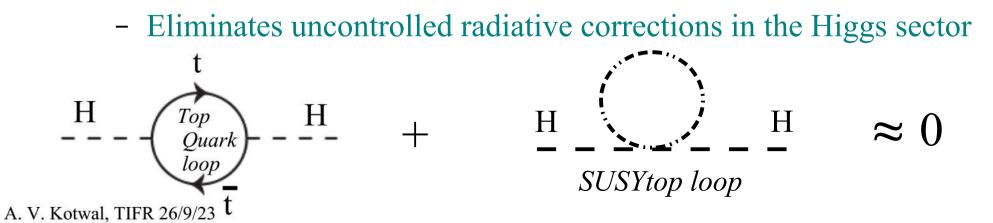

- SuperSymmetry is a space-time symmetry introduced in particle physics in the 1970's
 - A SuperSymmetry (SUSY) operator Q is defined by

 $Q | j > = | j \pm \frac{1}{2} >$

- ie. angular momentum of a quantum state is changed by $\frac{1}{2}$ unit
- A (symmetry) operator linking fermions and bosons
- A minimal supersymmetric extension of the Standard Model (MSSM) has been constructed some time ago

SUSY to the Rescue

- The divergent integral in this quantum loop must be regulated by a high-momentum cutoff, Λ , which could be the gravitational Planck energy scale $M_{planck} \sim 10^{19} \text{ GeV}$
 - Loop calculation gives Higgs boson mass correction $\sim M^2_{_{planck}}$
- physical Higgs boson mass $\sim 125 \text{ GeV}$
- Therefore need extreme "fine-tuning" through renormalization

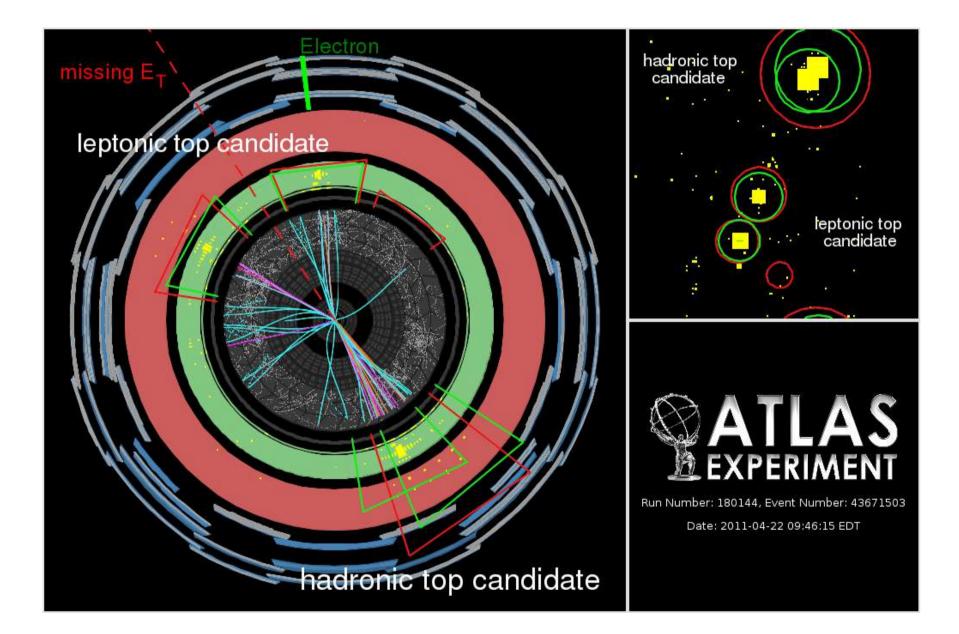


SUSY top loop

 SUSY vastly reduces fine-tuning requirement by introducing additional amplitudes containing fermion → boson loops and boson → fermion loops

SUSY to the Rescue

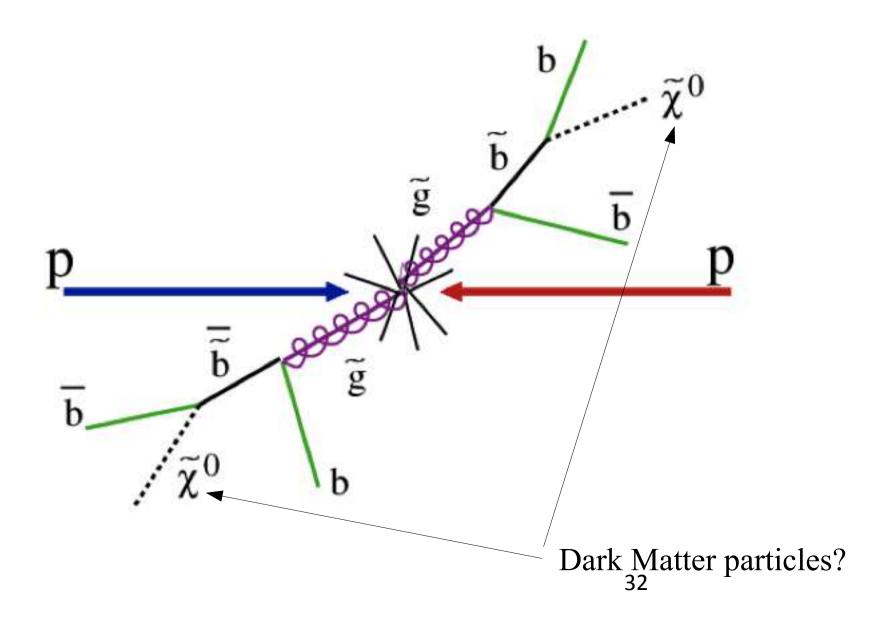
- SUSY adds bosonic (scalar) partners to fermions and fermionic partners to scalar and vector bosons
 - Higgs bosons ↔ Higgsino fermions
 - Top quark fermions ↔ supersymmetric top bosons
 - W and Z bosons \leftrightarrow Wino and Zino fermions
- By construction, all properties other than spin identical between superpartners
- Fermion loop with negative sign relative to boson loop, cancels exactly if SUSY was a exact symmetry



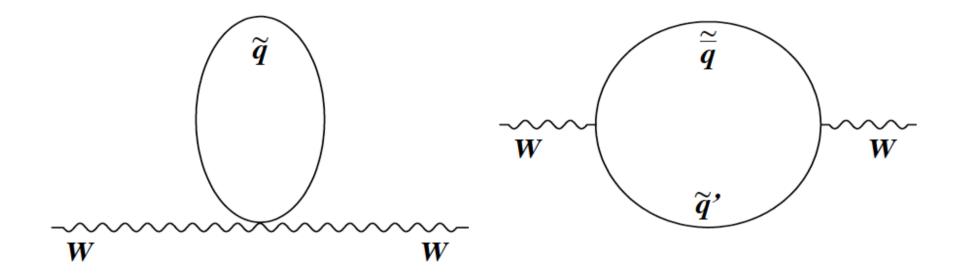
Higgs Sector of SUSY

- Standard Model trick of using φ and φ[†] to couple to up-type and down-type quarks respectively, no longer works
 - Terms containing ϕ^{\dagger} cannot respect SUSY-invariance
- MSSM is forced to introduce second Higgs field with the same quantum numbers as ϕ^{\dagger}
 - Two-Higgs Doublet Model with H_u and H_d is required to build the Higgs sector in MSSM
 - Pattern of fermion masses is a mystery may be partially explained by ratio of vacuum expectation values of H_{μ} and H_{d}
 - Motivates search for additional Higgs bosons

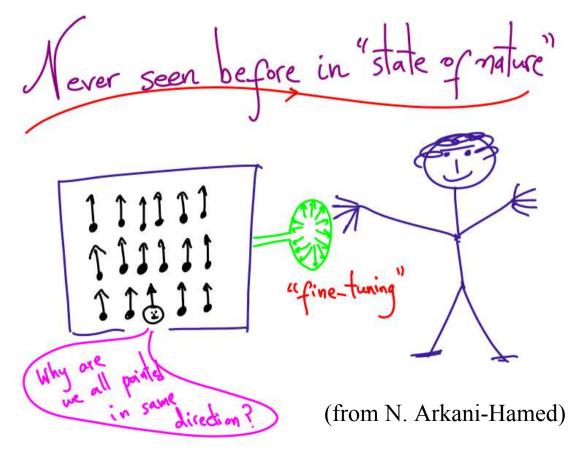
•
$$H_2 \rightarrow t\bar{t}, \ b\bar{b}, \ \tau\tau, \ \mu\mu$$


search for heavy particles decaying to top quark pairs

Higgs Sector of SUSY


- Standard Model trick of using ϕ and ϕ^{\dagger} to couple to up-type and down-type quarks respectively, does not work in SUSY
 - Lagrangian terms containing ϕ^{\dagger} cannot respect SUSY-invariance
- MSSM is forced to introduce second Higgs field with the same quantum numbers as ϕ^{\dagger}
 - Two-Higgs Doublet Model with H_u and H_d is required to build the Higgs sector in MSSM
 - Pattern of fermion masses is a mystery may be partially explained by ratio of vacuum expectation values of H_{μ} and H_{d}
 - Motivates search for additional Higgs bosons, e.g. $H_2 \rightarrow t\overline{t}$
 - Observed Higgs would be mixture of H_u and $H_d =>$ Partial unitarization of vector boson scattering by the light Higgs
 - Search for anomalous vector boson scattering

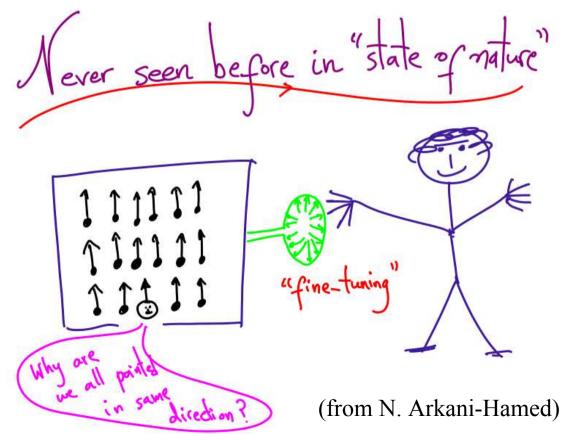
Production of SUSY Particles at LHC


New Physics through Quantum Loops

W Mass Corrections from Supersymmetric Particles

Summary of Fine-tuning

- Higgs boson completes the Standard Model
- Guiding principle for expecting physics beyond Standard Model is the need for a "natural" theory
 - Solving the "fine-tuning" problem of the Standard Model

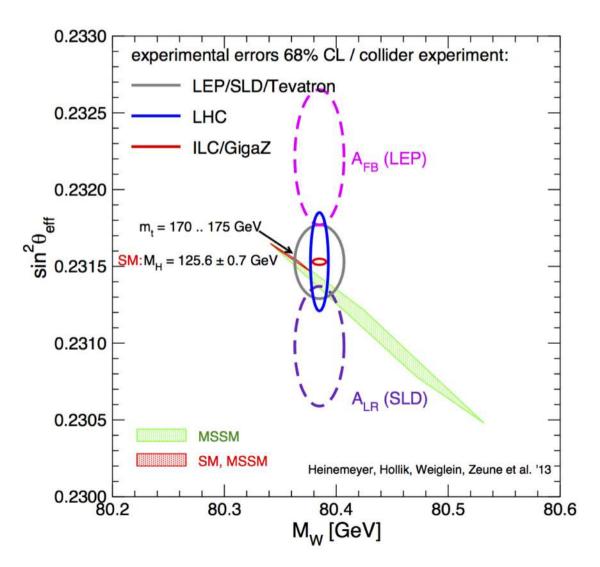

Spontaneous Symmetry Breaking

• Is the mechanism of Electroweak Symmetry Breaking, the Standard Model Higgs mechanism? Or is there more to it ??

Summary of Fine-tuning

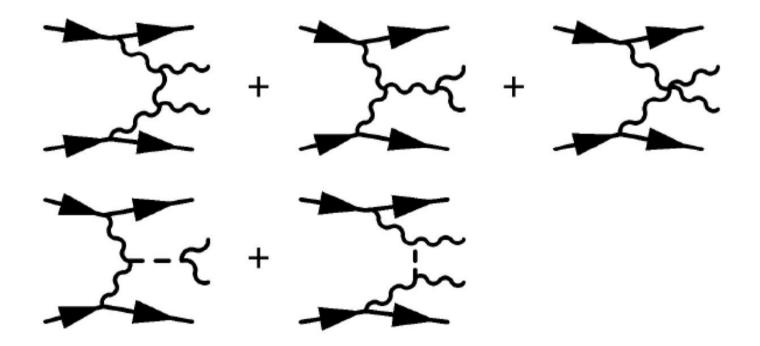
- Higgs boson completes the Standard Model
- Guiding principle for expecting physics beyond Standard Model is the need for a "natural" theory
 - Solving the "fine-tuning" problem of the Standard Model with a fundamental scalar field

Existence of weakly-interacting Dark Matter particles also requires physics beyond Standard Model


Next Steps for Electroweak Measurements

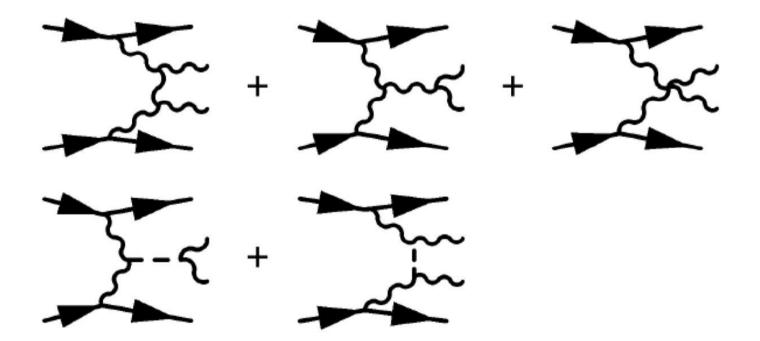
- Electroweak observables access all the mechanisms that can stabilize / explain the light Higgs mass
 - Is it stabilized by a symmetry such as SuperSymmetry ?
 - Is there new strong dynamics ?
 - Do extra-dimensional models bring the Planck scale close to Electroweak scale?

- two areas of electroweak physics
 - Electroweak precision observables (EWPOs) : M_w and $\sin^2\theta_{IA}$


$Sin^2\theta_{eff}$ and M_w

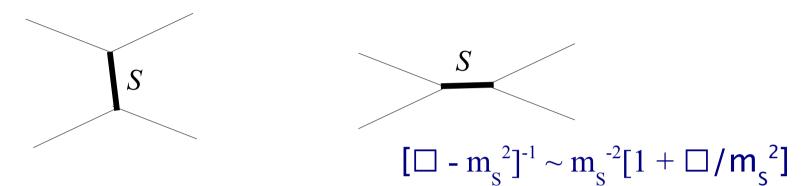
- Both EWPOs are now precisely predicted in the SM
 - And correlated range predicted in beyond-SM models such as MSSM

Vector Boson Scattering


- This is a key process accessible for the first time at LHC
- A prime motivator for LHC/SSC: without Higgs (or some other) mechanism, longitudinally-polarized vector boson scattering amplitudes would violate tree-level unitarity above ~ 1 TeV

Vector Boson Scattering is intimately connected with EWSB

Vector Boson Scattering

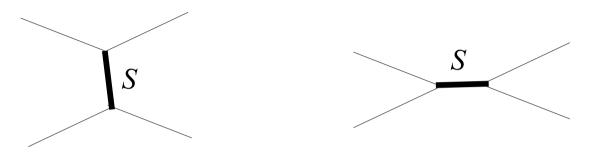

- This is a key process accessible for the first time at LHC
- A prime motivator for LHC/SSC: without Higgs (or some other) mechanism, longitudinally-polarized vector boson scattering amplitudes would violate tree-level unitarity above ~ 1 TeV

We still have to demonstrate experimentally that unitarizing mechanism is working, and how it is working

A Toy Model for BSM extension

- Consider a term coupling the Higgs to a singlet scaler S: $f \phi^{\dagger} \phi S$
- Via S exchange, can mediate scattering process: $\phi\phi
 ightarrow\phi\phi$

• For energies $\ll m_s$, induces effective field theory operators:

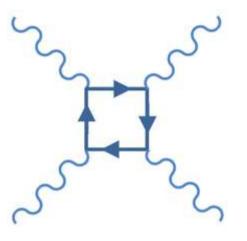

– Dimension-4:
$$(f/m_s)^2 (\phi^{\dagger}\phi)^2$$

- Dimension-6: $O_{\phi d} = (f^2 / m_s^4) |\partial_{\mu}(\phi^{\dagger}\phi)\partial^{\mu}(\phi^{\dagger}\phi)|$
- This is one of the operators predicted in strongly-interacting light Higgs models
 - Alternate mechanism to SUSY for ensuring light Higgs boson

A. V. Kotwal, TIFR 26/9/23 vBS compared to SM

A Toy Model for BSM extension

- Consider a term coupling the Higgs to a singlet scaler S: $f \phi^{\dagger} \phi S$
- Via S exchange, can mediate scattering process: $\phi\phi
 ightarrow \phi\phi$


• For energies $\ll m_s$, induces effective field theory operators:

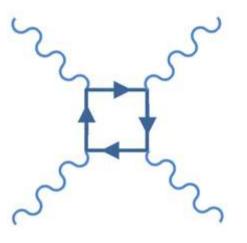
– Dimension-4:
$$(f/m_s)^2 (\phi^{\dagger}\phi)^2$$

- Dimension-6: $O_{\phi d} = (f^2 / m_s^4) |\partial_{\mu}(\phi^{\dagger}\phi)\partial^{\mu}(\phi^{\dagger}\phi)|$
- This is one of the operators predicted in strongly-interacting light Higgs models
- Observing a deviation in VBS consistent with this model would immediately point to model parameter values

Another Toy Model

• Consider the analogy with light-by-light scattering via electron loop

• Euler-Heisenberg effective lagrangian at low energies


$$\mathcal{L} = \frac{1}{2} \left(\mathbf{E}^2 - \mathbf{B}^2 \right) + \frac{2\alpha^2}{45m^4} \left[\left(\mathbf{E}^2 - \mathbf{B}^2 \right)^2 + 7 \left(\mathbf{E} \cdot \mathbf{B} \right)^2 \right]$$

- Second term can be re-written in terms of

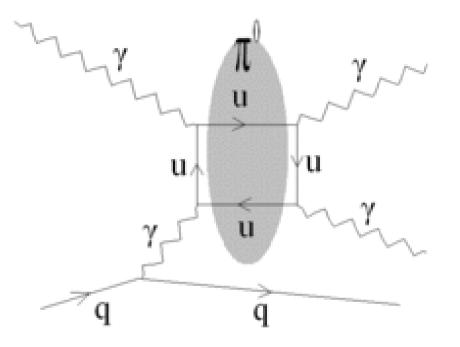
$$F_{\mu\rho}F^{\mu\sigma}F^{\nu\rho}F_{\nu\sigma} \qquad (F_{\mu\nu}F^{\mu\nu})^2$$

Another Toy Model

• Consider the analogy with light-by-light scattering via electron loop

• Euler-Heisenberg effective lagrangian at low energies

$$\mathcal{L} = \frac{1}{2} \left(\mathbf{E}^2 - \mathbf{B}^2 \right) + \frac{2\alpha^2}{45m^4} \left[\left(\mathbf{E}^2 - \mathbf{B}^2 \right)^2 + 7 \left(\mathbf{E} \cdot \mathbf{B} \right)^2 \right]$$


- Second term can be re-written in terms of

$$F_{\mu\rho}F^{\mu\sigma}F^{\nu\rho}F_{\nu\sigma} \qquad (F_{\mu\nu}F^{\mu\nu})^2$$

Operator coefficients contain information on mass and coupling of new dynamical degrees of freedom A. V. Kotwal, TIFR 26/9/23

Another Analogy – Primakoff Production of π^0

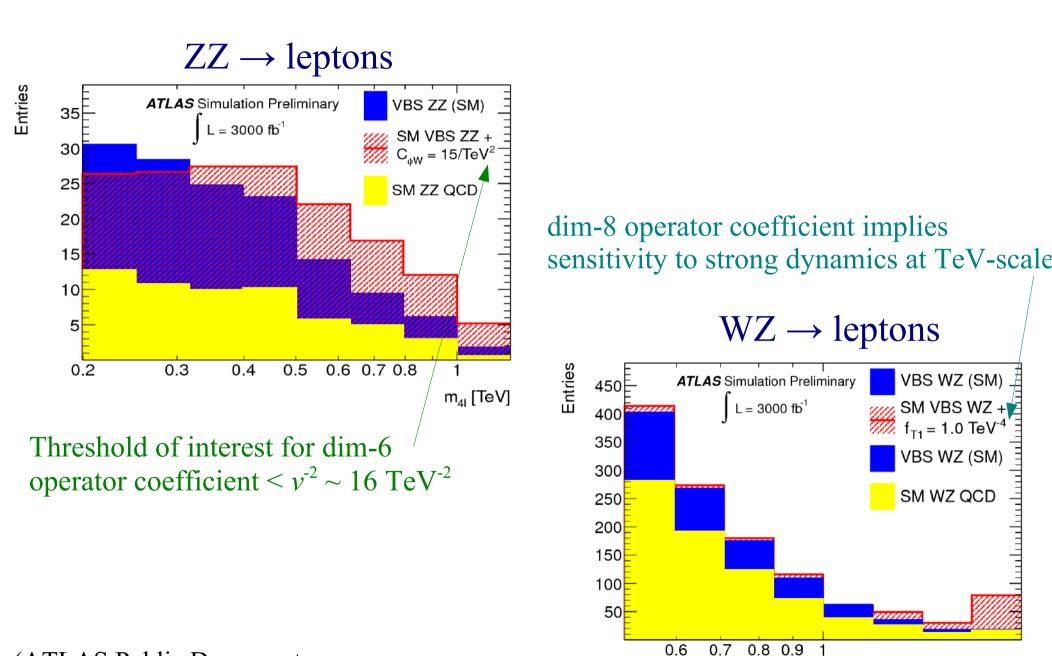
• Primakoff production by photon interacting with strong nuclear EM field

 Therefore following operators can describe scalar resonance production in VBS

$$F_{\mu\rho}F^{\mu\sigma}F^{\nu\rho}F_{\nu\sigma} \qquad (F_{\mu\nu}F^{\mu\nu})^2$$

Operator coefficients contain information on mass and coupling of new scalar resonance

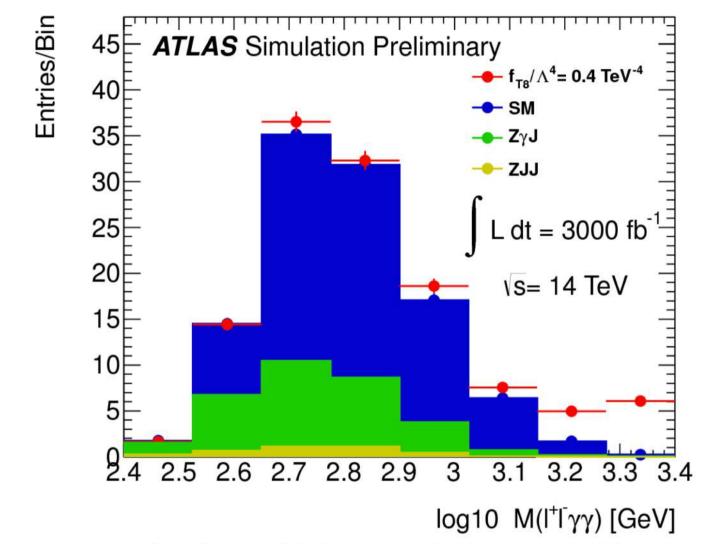
Effective Field Theory Operators


• All dimension-6 and dimension-8 operators have been catalogued

$$\mathcal{L}_{\mathcal{EFT}} = \mathcal{L}_{SM} + \sum_{i} rac{|c_i|}{\Lambda^2} \mathcal{O}_i + \sum_{j} rac{f_j}{\Lambda^4} \mathcal{O}_j$$

- LHC has shown the potential for
 - measuring new physics parameterized by higher-dimension operators
 - Differentiating between different operators using
 - Direct measurement of energy-dependence
 - different channels
 - Dimension-8 operators tested:

$$\mathcal{O}_{S,0} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right]$$
$$\mathcal{O}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{O}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$
$$\mathcal{O}_{T,1} = \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] \times \operatorname{Tr} \left[W_{\mu\beta} W^{\alpha\nu} \right]$$


VBS Studies using Forward Tagged Jets

(ATLAS Public Document ATL-PHYS-PUB-2013-006) A. V. Kotwal, TIFR 26/9/23

m_{3lv} [TeV]

Complementarity of VBS and Triboson production

Anomalous Zyy production at high mass also very sensitive to "T" operators

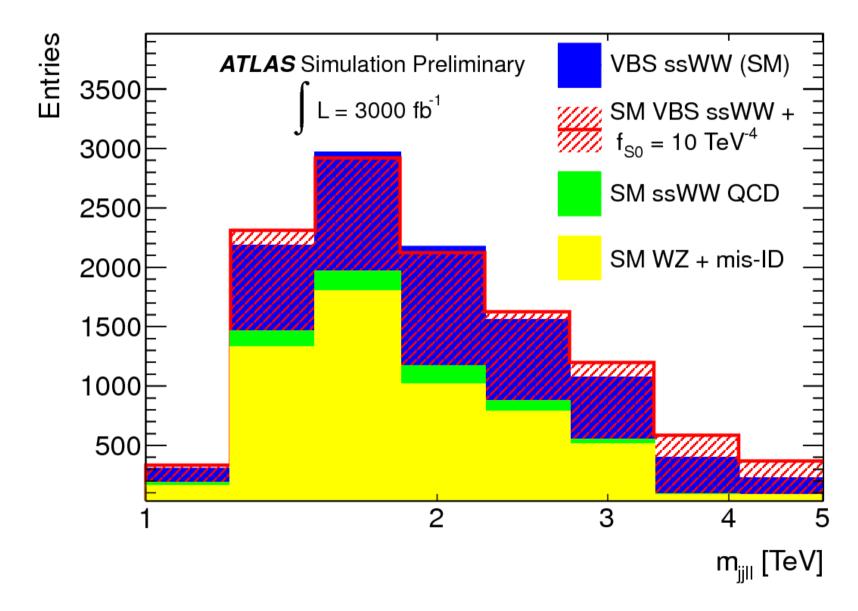
=> Comparison of VBS and triboson production is another powerful capability for characterizing the new physics A. V. Kotwal, TIFR 26/9/23

Program of VBS and Triboson Measurements

Parameter	dimension	channel	Λ_{UV} [TeV]	300 fb ⁻¹		3000 fb ⁻¹	
				5σ	95% CL	5σ	95% CL
$c_{\phi W}/\Lambda^2$	6	ZZ	1.9	34 TeV^{-2}	20 TeV ⁻²	16 TeV ⁻²	9.3 TeV ⁻²
f_{S0}/Λ^4	8	$W^{\pm}W^{\pm}$	2.0	10 TeV^{-4}	6.8 TeV^{-4}	4.5 TeV^{-4}	0.8 TeV^{-4}
f_{T1}/Λ^4	8	WZ	3.7	1.3 TeV^{-4}	0.7 TeV^{-4}	0.6 TeV^{-4}	0.3 TeV^{-4}
f_{T8}/Λ^4	8	Ζγγ	12	0.9 TeV^{-4}	0.5 TeV^{-4}	0.4 TeV^{-4}	0.2 TeV^{-4}
f_{T9}/Λ^4	8	Ζγγ	13	2.0 TeV^{-4}	0.9 TeV^{-4}	0.7 TeV^{-4}	0.3 TeV^{-4}

Table 5: 5 σ -significance discovery values and 95% CL limits for coefficients of higher-dimension electroweak operators. Λ_{UV} is the unitarity violation bound corresponding to the sensitivity with 3000 fb⁻¹ of integrated luminosity.

Conclusions:


1) factor of 2-3 improvement in sensitivity with Phase II

2) single-channel sensitivities pushed into the TeV-scale if new dynamics is strongly-coupled to Higgs and vector bosons

3) a powerful method of probing models of strongly-interacting light Higgs

4) model-independent tests of BSM dynamics A. V. Kotwal, TIFR 26/9/23

VBS Study using same-sign WW \rightarrow leptons

Stronger SM interference for "S₀" operator \rightarrow different kinematic dependence