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Generating the patterns

I Non-negative integer height zi on an infinite square lattice
I If zi ≥ 4, Unstable.

I Start with a periodic background of “small” stable heights.
I Add N particles at a single site (say origin)

z0 → z0 + N

I Relaxation: if unstable, topple.

zn.n. → zn.n. + 1

zi → zi − 4

I Iterate until stable .

The relaxed height distribution forms deterministic complex
patterns.
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The patterns

N = 4× 104. The color code: Red=0,Blue=1,Green=2,Yellow=3.

Figure: Background all zi = 0 Figure: Background all zi = 2
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Outline

I Motivation

I Characterization of the patterns

I Robustness to external noise

I Possible connection to some interesting mathematics
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Motivation

Figure: N = 4× 104 Figure: N = 2× 105 Figure: N = 4× 105

Diameter ∼
√

N.
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Proportionate growth
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Motivation. . . cont.

Proportionate growth

Figure: Different body parts in animals grow roughly at the same rate.
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Motivation . . . contd.

I Proportionate growth
requires regulation,
and/or communication
between different parts.

I Most existing models of
growth in physics
literature DLA, KPZ
growth, Invasion
percolation, etc does not
have this property.

I Extra symmetries and
robustness
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Motivation . . . contd.

I Emergence of complex
structures from simple
local rules, e.g. Fractals

I Sandpile patterns are
complex, yet simpler to
analytically characterize.

I Exact characterization of
the pattern involves some
interesting mathematics

I Discrete analytic
functions

I Tropical polynomials
Figure: Mandelbrot set
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Characterizing the pattern

I Proportionate growth + Diameter ∼
√

N

⇒ Describe in reduced coordinates

ξ = x/
√

N, η = y/
√

N

I Characterize pattern in terms of density of heights ρ (ξ, η)
= the height averaged over an area δξδη around (ξ, η), with
1/
√

N � δξ � 1 and 1/
√

N � δη � 1.
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Characterizing the pattern

Let T (x , y) = # of toppling at (x , y).

′∑
T (x ′, y ′)− 4T (x , y) = ∆z(x , y)− Nδx ,0δy ,0 (1)

Define

φ (ξ, η) = lim
N→∞

T (x , y)

N

Then
∇2φ (ξ, η) = ∆ρ (ξ, η)− δ (ξ) δ (η) ,

where ∆ρ is the change in density.

The complete specification of φ determines the patterns.

Tridib Sadhu Theory colloquium



Determining φ

I Patches with periodic heights.

pattern

I ρ(ξ, η) is constant within a patch.
I Lemma:

φ is a quadratic function of ξ, η in each patch. Proof

I Continuity of φ and its first derivatives along the patch
boundaries imposes constraints.

Solve the constraints and determine φ.
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Simpler pattern

Figure: F-lattice with zc = 2
Figure: N = 2x105 on
checkerboard background of 1
and 0 heights
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Adjacency graph

Figure: Adjacency graph
1/z2 picture Figure: Representation as a

square lattice on two sheeted
Riemann surface

Tridib Sadhu Theory colloquium



Quantitative characterization

I Label patches using (m, n).

I Potential in a dense patch (m, n),

φ(ξ, η) =
1

8
(m + 1)ξ2 +

1

4
nξη +

1

8
(1−m)η2 + dξ + eη + f

In a light patch

φ(ξ, η) =
1

8
mξ2 +

1

4
nξη − 1

8
mη2 + dm,nξ + em,nη + fm,n

I Continuity of φ and its first derivatives along the patch
boundaries imply, dm,n and em,n follows

ψm+1,n+1 + ψm+1,n−1 + ψm−1,n+1 + ψm−1,n−1 − 4ψm,n = 0,
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Quantitative characterization

Boundary condition:

I d(0, 0) + ie(0, 0) = 0

I For large |m + in|,

d(m, n) + ie(m, n) ' ± 1√
2π

√
m + in

Solve this set of linear equations numerically on a large grid.

The pattern has exact eight fold rotational symmetry. Aside
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Multiple sites of addition

Figure: N = 105 added each at sites (−400, 0) and (400, 0)
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Adjacency graph

Figure: Adjacency graph
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Line of sink sites

Figure: N = 105 added at site (0, 1) with sink sites along the x-axis.
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Adjacency graph

Figure: Adjacency graph
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Growth rate

”Diameter” of the pattern

Λ ∼ Nα

In absence of sink sites α = 1/2.
For the line sink:

I # un-absorbed particles Nr ∼ Λ2

I # absorbed particles Na ∼ Λ2
∫ 1

1/Λ dξ ∂
∂ηφ
∣∣∣
η=0

I Close to the sink line

φ ∼ cos (θ)

r
⇒ Na ∼ Λ3

I Hence,

C1Λ3 + C2Λ2 = N ⇒ Λ ∼ N1/3 For large N.
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Growth rate

I The equation gives correction to scaling.

I Unexpected accuracy: For C1 = 0.1853, and C2 = 0.528 the
solution of this equation differs from the actual Λ (N) by at
most 1, for 100 < N < 3× 106

Other sink geometries

I For a wedge of θ, Λ ∼ Nα, with α = 1/ (2 + π/θ).

I For a point sink adjacent to the site of addition
Λ ∼

√
N/ log N.

I Generalizable to higher dimensions
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Fast growing sandpiles

I If the initial background density is low enough everywhere,

Λ ∼ N1/2

I If many sites have large height

Λ =∞ for finite N

I For an in-between set of periodic backgrounds

Λ ∼ Nα for 1/2 < α ≤ 1
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fast-growing sandpiles . . . contd.

Lemma:The potential function

φ(ξ, η) = LimN→∞
1

N
T (Nαξ,Nαη)

for fast-growing sandpiles φ is linear inside periodic patches.

Proof: Proof as before.
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Pattern on F-lattice showing α = 0.55

Figure: Periodic
background: Filled
circle=0, unfilled=1

Figure: Only patch boundaries are drawn
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Directed Triangular lattice showing α = 1

Figure: Periodic
background: Filled
circle=1, unfilled=2

Figure: Patern with N = 1000
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The adjacency graphs

Figure: Adjacency graph
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Characterizing the triangular non-compact pattern

Analysis is similar to the earlier characterization, actually simpler.

The potential function in different patches is given by

φP = ap ξ + bP η + fp

aP and bp are determined by matching slope discontinuity to line
charge densities.

Then, fp satisfies a Laplace’s equation on the adjacency graph.
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Robustness of the pattern

The arguments only depend on the existence of only two types of
patches, and straight line boundaries.

These can be found ( by trial and error) in other cases also.
Then the asymptotic pattern is identical.
Some examples:
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Figure: F-lattice with background density 5/8
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Figure: Manhattan lattice, with initial density 1/2, and 120, 000 particles
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Robustness

Figure: Periodic
background: Filled
circle=1, unfilled=2

Figure: Pattern with N = 1000
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Robustness

Figure: Periodic
background: Filled
circle=1, unfilled=2

Figure: Pattern with N = 1000
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Robustness

Figure: (a) 1% noise (b) 10%

Noise in the initial particle distribution.
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Noise in the background

Figure: (a) 1% noise (b) 10%
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Robustness

Figure: (a) 0.1% noise (b) 1%

Noise in the relaxation rule.
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Random broken edges

Figure: (a) 1% noise (b) 10%
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A variational formulation

The general principle is called the (lazy man’s)

‘Least Action Principle’: The actual pattern is the stable pattern
reached by minimum number of toppling.

∇2φ = +δρ− δ(ξ, η)

Proof is trivial for abelian models: If a site is unstable, it will not
stablize, until toppled. Order of toppling does not matter.
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Formulation as an electrostatics problem

We have ∇2φ = +δρ− δ(ξ, η)
Positive point charge +1 at origin, and unit negative charge of
areal density 1

Can we distribute the negative charge in such a way that the net
potential is piecewise-quadratic, and exactly zero far away?

The answer, presumably unique, is the observed pattern on the
F-lattice.
Other backgrounds have more choices of charge densities .
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Discrete Quadratic Approximants

Example of discrete approximants:

f(
x

)

x

Figure: Approximate f (x) by piece-wise linear functions with integer
slopes

The best “discrete approximant”to a given smooth function.
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An iterative formulation

I Start with a trial pattern.

I Determine the corresponding φ(ξ, η)

I Determine the “best” piece-wise quadratic approximants to
φ(ξ, η) using the given set of quadratic functions φP .

I The correspond charge density is piece-wise constant. Remove
singularities at boundaries.

I Determine corresponding potential φ(1)(ξ, η).

I Iterate

If the process converges, we get the asymptotic pattern.
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Discrete Analyticity and Discrete Quadratic Approximants

Discrete Analytic Functions
Functions defined only on discrete points in the complex z− plane.
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simple discrete analytic functions are constant, z , z2, z3,
z4 − zz̄ , ...
Define DA function F1/2(z), which varies as

√
z for large |z |, and

F (0) = 0
The function d(m, n) + ie(m, n) which characterizes the pattern
for F-lattices is cF1/2(m + in).

Figure: A discretized two sheeted Riemann surface for F1/2(z)
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Connection to Tropical Mathematics

Define
a⊕b = Max [a, b]

a⊗ b = a + b

Then standard properties of usual addition and multiplication (
commutative, identity, distributive ..) contiue to hold.
Example: 3⊕5⊕2 = 5

3⊗ 4 = 7
Tropical polynomials: a⊗ x ⊗ x ⊕ b ⊗ x ⊕ c
Example: x ⊗ x⊕2⊗ x⊕5 = Max [2x , x + 2, 5].
Fundamental theorem of tropical algebra.

A piecewise -linear convex function can be represented as a
tropical polynomial.
Hence useful for describing the function φ(ξ, η).
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Summary

I A model of proportionate growth

I Quantitatively characterized a large class of patterns with only
two types of patches.

I Additional symmetries.

I Characterized patterns with multiple sources and sinks. Also
determined the growth rates

I Analyzed a large class of patterns with Λ >
√

N and
quantitatively characterized some such patterns.
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Thank you
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Conformal transformation

Figure: z ′ = 1/z2 picture of the original picture. goback
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Proof

Proof: Taylor expand φ(ξ, η) inside a patch about (ξ0, η0).

φ(ξ0+∆ξ, η0+∆η) = φ(ξ0, η0)+d∆ξ+e∆η+a2∆ξ2+· · ·+K (∆ξ)3+· · ·

In terms of toppling number function T (X ,Y ) this becomes

T (X0 + ∆X ,Y0 + δY ) ' T (X0,Y0) + d
√

N∆X + e
√

N∆Y

+a2∆X 2 + · · ·+ K (∆X )3

√
N

+ · · ·

Since T is always an integer, it would jump by 1 at separations
N1/6, causing many defect lines. Hence K = 0. main stream
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Figure: Tiling with square tiles

goback
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