Pattern formation in sandpile models of self-organized criticality

Tridib Sadhu

28 Dec 2010

Tridib Sadhu Theory colloquium

- ▶ Non-negative integer height *z_i* on an infinite square lattice
- ▶ If $z_i \ge 4$, Unstable.

- ▶ Non-negative integer height *z_i* on an infinite square lattice
- ▶ If $z_i \ge 4$, Unstable.
- Start with a periodic background of "small" stable heights.

- ▶ Non-negative integer height *z_i* on an infinite square lattice
- ▶ If $z_i \ge 4$, Unstable.
- Start with a periodic background of "small" stable heights.
- Add N particles at a single site (say origin)

$$z_0 \rightarrow z_0 + N$$

- ▶ Non-negative integer height *z_i* on an infinite square lattice
- ▶ If $z_i \ge 4$, Unstable.
- Start with a periodic background of "small" stable heights.
- Add N particles at a single site (say origin)

$$z_0 \rightarrow z_0 + N$$

Relaxation: if unstable, topple.

$$egin{array}{rll} z_{n.n.} &
ightarrow & z_{n.n.}+1 \ z_i &
ightarrow & z_i-4 \end{array}$$

- Non-negative integer height z_i on an infinite square lattice
- ▶ If $z_i \ge 4$, Unstable.
- Start with a periodic background of "small" stable heights.
- Add N particles at a single site (say origin)

$$z_0 \rightarrow z_0 + N$$

Relaxation: if unstable, topple.

$$z_{n.n.} \rightarrow z_{n.n.} + 1$$

 $z_i \rightarrow z_i - 4$

Iterate until stable .

The relaxed height distribution forms deterministic complex patterns.

The patterns

 $N = 4 \times 10^4$. The color code: Red=0,Blue=1,Green=2,Yellow=3.

Figure: Background all $z_i = 0$

Figure: Background all $z_i = 2$

- Motivation
- Characterization of the patterns
- Robustness to external noise
- Possible connection to some interesting mathematics

Figure: $N = 4 \times 10^4$

Figure: $N = 2 \times 10^5$

Figure: $N = 4 \times 10^5$

Diameter $\sim \sqrt{N}$.

Proportionate growth

Tridib Sadhu Theory colloquium

Motivation...cont.

Proportionate growth

Figure: Different body parts in animals grow roughly at the same rate.

Motivation ... contd.

Proportionate growth

requires regulation, and/or communication between different parts.

- Most existing models of growth in physics literature DLA, KPZ growth, Invasion percolation, etc does not have this property.
- Extra symmetries and robustness

Motivation ... contd.

- Emergence of complex structures from simple local rules, e.g. Fractals
- Sandpile patterns are complex, yet simpler to analytically characterize.
- Exact characterization of the pattern involves some interesting mathematics
 - Discrete analytic functions
 - Tropical polynomials

Figure: Mandelbrot set

• Proportionate growth + Diameter $\sim \sqrt{N}$

 \Rightarrow Describe in reduced coordinates

$$\xi = x/\sqrt{N}, \quad \eta = y/\sqrt{N}$$

• Characterize pattern in terms of density of heights $\rho(\xi, \eta)$ = the height averaged over an area $\delta\xi\delta\eta$ around (ξ, η) , with $1/\sqrt{N} \ll \delta\xi \ll 1$ and $1/\sqrt{N} \ll \delta\eta \ll 1$.

Characterizing the pattern

Let
$$T(x, y) = \#$$
 of toppling at (x, y) .

$$\sum' T(x', y') - 4T(x, y) = \Delta z(x, y) - N\delta_{x,0}\delta_{y,0}$$
(1)

Define

$$\phi\left(\xi,\eta\right) = \lim_{N\to\infty} \frac{T\left(x,y\right)}{N}$$

Then

$$\nabla^{2}\phi(\xi,\eta) = \Delta\rho(\xi,\eta) - \delta(\xi)\,\delta(\eta)\,,$$

where $\Delta \rho$ is the change in density.

The complete specification of ϕ determines the patterns.

Patches with periodic heights.

pattern

Patches with periodic heights.

▶ pattern

• $\rho(\xi, \eta)$ is constant within a patch.

Patches with periodic heights.

▶ pattern

Lemma:

 ϕ is a quadratic function of ξ, η in each patch.

Patches with periodic heights.

pattern

• $\rho(\xi, \eta)$ is constant within a patch.

 ϕ is a quadratic function of ξ, η in each patch.

Continuity of \u03c6 and its first derivatives along the patch boundaries imposes constraints.

Solve the constraints and determine ϕ .

Simpler pattern

Figure: F-lattice with $z_c = 2$

Figure: $N = 2 \times 10^5$ on checkerboard background of 1 and 0 heights

Adjacency graph

Figure: Adjacency graph

Figure: Representation as a square lattice on two sheeted Riemann surface

Quantitative characterization

• Label patches using (m, n).

Quantitative characterization

► Label patches using (*m*, *n*).

Potential in a dense patch (m, n),

$$\phi(\xi,\eta) = \frac{1}{8}(m+1)\xi^2 + \frac{1}{4}n\xi\eta + \frac{1}{8}(1-m)\eta^2 + d\xi + e\eta + f$$

In a light patch

$$\phi(\xi,\eta) = \frac{1}{8}m\xi^2 + \frac{1}{4}n\xi\eta - \frac{1}{8}m\eta^2 + d_{m,n}\xi + e_{m,n}\eta + f_{m,n}$$

Quantitative characterization

► Label patches using (*m*, *n*).

Potential in a dense patch (m, n),

$$\phi(\xi,\eta) = \frac{1}{8}(m+1)\xi^2 + \frac{1}{4}n\xi\eta + \frac{1}{8}(1-m)\eta^2 + d\xi + e\eta + f$$

In a light patch

$$\phi(\xi,\eta) = \frac{1}{8}m\xi^2 + \frac{1}{4}n\xi\eta - \frac{1}{8}m\eta^2 + d_{m,n}\xi + e_{m,n}\eta + f_{m,n}$$

► Continuity of φ and its first derivatives along the patch boundaries imply, d_{m,n} and e_{m,n} follows

$$\psi_{m+1,n+1} + \psi_{m+1,n-1} + \psi_{m-1,n+1} + \psi_{m-1,n-1} - 4\psi_{m,n} = 0,$$

Boundary condition:

$$d(m,n) + ie(m,n) \simeq \pm \frac{1}{\sqrt{2\pi}} \sqrt{m+in}$$

Solve this set of linear equations numerically on a large grid.

Boundary condition:

$$d(m,n) + ie(m,n) \simeq \pm \frac{1}{\sqrt{2\pi}} \sqrt{m+in}$$

Solve this set of linear equations numerically on a large grid.

The pattern has exact eight fold rotational symmetry. • Aside

Multiple sites of addition

Figure: $N = 10^5$ added each at sites (-400, 0) and (400, 0)

Adjacency graph

Figure: Adjacency graph

Line of sink sites

Figure: $N = 10^5$ added at site (0, 1) with sink sites along the x-axis.

Adjacency graph

Figure: Adjacency graph

"Diameter" of the pattern

$$\Lambda \sim N^{lpha}$$

In absence of sink sites $\alpha = 1/2$. For the line sink:

• # un-absorbed particles $N_r \sim \Lambda^2$

• # absorbed particles $N_a \sim \Lambda^2 \int_{1/\Lambda}^1 d\xi \frac{\partial}{\partial \eta} \phi \Big|_{\eta=0}$

Close to the sink line

$$\phi \sim \frac{\cos{(\theta)}}{r} \Rightarrow N_a \sim \Lambda^3$$

Hence,

$$\boxed{C_1 \Lambda^3 + C_2 \Lambda^2 = N} \Rightarrow \Lambda \sim N^{1/3}$$
 For large N.

- The equation gives correction to scaling.
- ► Unexpected accuracy: For C₁ = 0.1853, and C₂ = 0.528 the solution of this equation differs from the actual Λ(N) by at most 1, for 100 < N < 3 × 10⁶

Other sink geometries

- For a wedge of θ , $\Lambda \sim N^{\alpha}$, with $\alpha = 1/(2 + \pi/\theta)$.
- For a point sink adjacent to the site of addition $\Lambda \sim \sqrt{N/\log N}$.
- Generalizable to higher dimensions

If the initial background density is low enough everywhere,

$$\Lambda \sim \textit{N}^{1/2}$$

If many sites have large height

$$\Lambda = \infty$$
 for finite N

For an in-between set of periodic backgrounds

$$\Lambda \sim \mathbf{N}^{\alpha} \quad \text{ for } 1/2 < \alpha \leq 1$$

Lemma: The potential function

$$\phi(\xi,\eta) = Lim_{N\to\infty}\frac{1}{N}T(N^{\alpha}\xi,N^{\alpha}\eta)$$

for fast-growing sandpiles ϕ is linear inside periodic patches.

Proof: Proof as before.

Pattern on F-lattice showing $\alpha = 0.55$

Figure: Periodic background: Filled circle=0, unfilled=1

Figure: Only patch boundaries are drawn

Directed Triangular lattice showing $\alpha = 1$

Figure: Patern with N = 1000

The adjacency graphs

Analysis is similar to the earlier characterization, actually simpler.

The potential function in different patches is given by

$$\phi_P = a_p \ \xi + b_P \ \eta + f_p$$

 a_P and b_p are determined by matching slope discontinuity to line charge densities.

Then, f_p satisfies a Laplace's equation on the adjacency graph.

The arguments only depend on the existence of only two types of patches, and straight line boundaries.

These can be found (by trial and error) in other cases also. Then the asymptotic pattern is identical. Some examples:

Figure: F-lattice with background density 5/8

Figure: Manhattan lattice, with initial density 1/2, and 120,000 particles

Robustness

Figure: Pattern with N = 1000

Figure: Periodic background: Filled circle=1, unfilled=2

Robustness

Figure: Periodic background: Filled circle=1, unfilled=2

Figure: Pattern with N = 1000

Figure: (a) 1% noise (b) 10%

Noise in the initial particle distribution.

Noise in the background

Figure: (a) 1% noise (b) 10%

Tridib Sadhu Theory colloquiu

Figure: (a) 0.1% noise (b) 1%

Noise in the relaxation rule.

Random broken edges

Figure: (a) 1% noise (b) 10%

Tridib Sadhu Theory colloqui

The general principle is called the (lazy man's)

'Least Action Principle': The actual pattern is the stable pattern reached by minimum number of toppling.

 $\nabla^2 \phi = +\delta \rho - \delta(\xi, \eta)$

Proof is trivial for abelian models: If a site is unstable, it will not stablize, until toppled. Order of toppling does not matter.

Formulation as an electrostatics problem

We have $\nabla^2 \phi = +\delta \rho - \delta(\xi, \eta)$ Positive point charge +1 at origin, and unit negative charge of a real density 1

Can we distribute the negative charge in such a way that the net potential is piecewise-quadratic, and exactly zero far away?

The answer, presumably unique, is the observed pattern on the F-lattice.

Other backgrounds have more choices of charge densities .

Example of discrete approximants:

Figure: Approximate f(x) by piece-wise linear functions with integer slopes

The best "discrete approximant" to a given smooth function.

- Start with a trial pattern.
- Determine the corresponding $\phi(\xi,\eta)$
- ► Determine the "best" piece-wise quadratic approximants to $\phi(\xi, \eta)$ using the given set of quadratic functions ϕ_P .
- The correspond charge density is piece-wise constant. Remove singularities at boundaries.
- Determine corresponding potential $\phi^{(1)}(\xi,\eta)$.
- Iterate

If the process converges, we get the asymptotic pattern.

Discrete Analyticity and Discrete Quadratic Approximants

Discrete Analytic Functions

Functions defined only on discrete points in the complex z- plane.

simple discrete analytic functions are constant, z, z^2, z^3 , $z^4 - z\overline{z}, ...$

Define DA function $F_{1/2}(z)$, which varies as \sqrt{z} for large |z|, and F(0) = 0

The function d(m, n) + ie(m, n) which characterizes the pattern for F-lattices is $cF_{1/2}(m + in)$.

Figure: A discretized two sheeted Riemann surface for $F_{1/2}(z)$

Define

$$a \oplus b = Max[a, b]$$

 $a \otimes b = a + b$

Then standard properties of usual addition and multiplication (commutative, identity, distributive ...) contiue to hold. Example: $3\oplus 5\oplus 2 = 5$

 $\mathbf{3}\otimes\mathbf{4}=\mathbf{7}$

Tropical polynomials: $a \otimes x \otimes x \oplus b \otimes x \oplus c$ Example: $x \otimes x \oplus 2 \otimes x \oplus 5 = Max[2x, x + 2, 5]$. Fundamental theorem of tropical algebra.

A piecewise -linear convex function can be represented as a tropical polynomial.

Hence useful for describing the function $\phi(\xi, \eta)$.

- A model of proportionate growth
- Quantitatively characterized a large class of patterns with only two types of patches.
- Additional symmetries.
- Characterized patterns with multiple sources and sinks. Also determined the growth rates
- Analyzed a large class of patterns with $\Lambda > \sqrt{N}$ and quantitatively characterized some such patterns.

References

- Pattern formation in growing sandpiles.
 Deepak Dhar, Tridib Sadhu and Samarth chandra, *Euro. Phys. Lett.*,(2008).
- Pattern formation in growing sandpiles with multiple sources and sinks.
 Tridib Sadhu and Deepak Dhar, J. Stat. Phys., (2009).
- Pattern formation in fast growing sandpiles. In preparation.

Thank you

Conformal transformation

Figure: $z' = 1/z^2$ picture of the original picture.

Tridib Sadhu Theory colloqu

Proof: Taylor expand $\phi(\xi, \eta)$ inside a patch about (ξ_0, η_0) .

$$\phi(\xi_0 + \Delta\xi, \eta_0 + \Delta\eta) = \phi(\xi_0, \eta_0) + d\Delta\xi + e\Delta\eta + a_2\Delta\xi^2 + \dots + K(\Delta\xi)^3 + \dots$$

In terms of toppling number function T(X, Y) this becomes

$$T(X_0 + \Delta X, Y_0 + \delta Y) \simeq T(X_0, Y_0) + d\sqrt{N}\Delta X + e\sqrt{N}\Delta Y + a_2\Delta X^2 + \dots + rac{K(\Delta X)^3}{\sqrt{N}} + \dots$$

Since T is always an integer, it would jump by 1 at separations $N^{1/6}$, causing many defect lines. Hence K = 0. Image stream

Figure: Tiling with square tiles

・ロン ・御と ・注と ・注と ……注

N=250k

