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Motivation

1. Particles passing through the detector, deposit
charge/energy in them.

2. The energy or momentum of primary particles
are reconstructed using the above measured
quantities of secondary particles.

3. i) Detector resolution

ii) Statistical fluctuations
iii) Background
iv) Efficiency

Lead to bias in reconstructed energy or
momentum of the primary
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Reconstruction

Generate primaries in Monte Carlo (target quantities: Energy/ momentum)
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Secondaries produced through governing physics

¥

Passed through the detector response (get measurable quantities)

¥

Relate the measured quantities to the primary unknowns

We know the true and the reconstructed value of target quantities. The
distributions of true and reconstructed quantities do not match!



Example

The energy of primary, reconstructed

log(E;) =Alog(N, )+ c, E.: True energy, N_: Number of secondaries

Fluctuation in number of

[T TTTI

events recorded.

Pl T \IH‘

Ne due to shower

—_
o
N

formation.

Primary Energy(TeV)
=)

Detector resolution in 18

measuring N_.




Example (continued... )
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Mismatch!!! Migration!!!
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Response matrix

-
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Probability of true energy E_ in the j-th
bin migrating to E_ in the i-th bin.

Smearing probability, calculated in the
response matrix.

Pij(ER\ET) = nij/Zinij

This give the response matrix

Here, Eini. is the number of events in j-th
bin of true enhergy distribution

E= P, (ElE,)E,



log, 0[ET/GeV]
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Truth

Unfolding

Response Pij calculated.
E.= P,(EqIE,E,
Inversion unfolding :

test wrt data:

- MC
- data
-2 jnversion
x%/16=0.8 prob=0.701
40

Overflow hin
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1. Inversion unfolding: Unable to handle large statistical fluctuations.

Singularity of matrix and unstable results. Inconsistency in many
cases

2. Bin-to-bin unfolding: Efficiency of each bin is calculated from
simulation. Can’t handle migration effects accurately.

Shift to regularized methods.




Regularized unfolding

lterative process.
Have a probabilistic approach.
Several methods:

1. Bayesian iterative method
2. Single value decomposition etc

Bayesian iterative method will be discussed further.
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Bayesian unfolding

1. Assume an initial vector (Normalized true vector) : p,
2. The response or smearing matrix is calculated using simulated data.

P(ER|E,) is calculated. (Train)
3. We have to calculate the Unfolding matrix P(E_|E;)
PEE)=_ P (ErlEr)py(Er)
EE’TP(ER‘E;”)pO(E/T)

4. Using this, we find the true distribution corresponding to the given reconstructed
distribution

Er = X, P(Eq[ER)Eg

5. Using the above, p, is calculated again and the iterations go on till convergent
solutions are obtained for unfolded distribution.
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Example 1: (RooUnfold package was used for unfolding)
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The simulated data set was divided into two parts: One for training
(response), the other was used for testing (unfolding and comparing with

what is expected)
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Example 1: Energy spectrum
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Example 2: In the previous data set, the training and

testing distributions are similar, here we demonstrate with

dissimilar distributions
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Example 2: In the previous data set, the training and

testing distributions are similar, here we demonstrate with

dissimilar distributions
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Setting the number of iterations

Regularization parameter

The best possible initial guess guided by
physics. In RooUnfold, the initial guess is
taken as training distribution.

Ax? in successive iterations is less than a
certain value (0.01, to be determined by
user).

A convergence criteria is to be set from
tests on simulation.

Usually converges in few iterations (~4).
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Uncertainities due to unfolding

1. Initial guess of p,
2. Errorin response matrix: Systematic: Determination of response
matrix from simulation. Statistical : Less no of events

n(C;)=%;%, Myn(E;)

Error propagation matrix calculated as,
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Efficiency and background

Efficiency : True E satisfies the quality cut but reconstructed E does
not

Background : True E does not satisfy the quality cut but
reconstructed E does.

THANK YOU
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