Confidence Interval
Estimation

JC Talk



Bayes and Frequentism: Old Controversy (AS THEY SAY)

Prob(parameter given data) Prob( data, given parameter)



Bavesian Frequentist

Basis of Bayes Theorem - Uses pdf for data,
method Posterior probability for fixed parameters

distribution
Meaning of |Degree of belief Frequentist definition
probability
Prob of Yes Anathema
parameters?
Needs prior? | Yes No
Choice of Yes Yes (except F+C)
interval?
Data Only data you have ....+ other possible
considered data
Likelihood Yes No

princiole?
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Bayesian

Frequentist

Ensemble of |No Yes (but often not
experiment explicit)

Final Posterior probability Parameter values -
statement distribution Data is likely
Unphysical/ Excluded by prior Can occur

empty ranges

Systematics Integrate over prior Extend dimensionality
of frequentist
construction

Coverage Unimportant Built-in

Decision Yes (uses cost function) | Not useful

makina
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The frequentist definition of
P(X)= N(X)/N for N — oo probability
Examples: coins, dice, cards
@ For continuous x extend to Probability Density

P(xtox + dx) = p(x)dx

p(x) is the probability density function (pdf)

@ Examples:
o Measuring continuous quantities (p(x) often Gaussian, Poisson, ... )
@ Counting rates
o Physical Quantities: Parton momentum fractions (proton pdfs) ...
@ Alternative: Define Probability P(X) as “degree of belief that X is
true”

The Bayesian definition of
probability



Likelihood

@ Probability distribution of random variable x often depends on some
parameter a
@ Joint function p(x, a):
o Considered as p(x)|a this is the pdf.
o Normalised: [ p(x)dx =1
o Considered as p(a)|x this is the Likelihood L(a) (or £(a))
@ Not “likelihood of a" but “likelihood that a would give x"
@ Not normalised. Indeed, must never be integrated.

@ This is going to be one of the central concepts/quantities for the rest
of the talk

@ If we want to know a parameter a, we are looking for the point where
the likelihood that a would predict the data x is maximized

Point estimation

@ If we want to test a Hypothesis Hy against another one (H;), we want Hypothesis testing
to compare their likelihoods

@ If we want to know what a cannot be, we want to know where £(a)|x
is small

Interval estimation



Classical (Neyman’s) Confidence Intervals

@ Let's neglect systematics
for the time being. .. —

@ Use Poisson-Distribution
p(n; X) = e *\"/nl

@ For any true A the
probability that (n|A) is
within the belt is 68%
(or more) by construction

A

@ For any n, [A_, \{]
covers the true \ at 68% :
confidence —

@ Only integrated over n, n
not over A!

Technique technically works for every CL, and single or double sided



Profile Likelihood method
Based on Neyman-Pearson Lemma

Frequentist results are shown with the best-fit parameters and their errors using the profile likelihood
technique. The profile likelihood function is defined as

Zprofile( "’) - mgxﬁ(g, 1) - H(él 1)

i

Test statistic is defined as

A
-

TS = —log ( .
£p7‘ofilc(9)

Zprofilc (9_') )
Errors are presented using Wilks’ Theorem’

*S. S. Wilks, “The large-sample distribution of the likelihood ratio for testing composite
hypotheses,” Ann. Math. Statist. 9, 60—-62 (1938)
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FIG. 1. A generic confidence belt construction and its use. For each value of p, one draws
a horizontal acceptance interval [zy,zs] such that P(z € [z1,22]|p) = a. Upon performing an
experiment to measure x and obtaining the value z, one draws the dashed vertical line through
zg. The confidence interval [j;.ps] is the union of all values of y for which the corresponding
acceptance interval is intercepted by the vertical line.

Gaussian with Boundary at
origin

P(a|p)= %exp(—(r — 1)%/2).
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FIG. 2. Standard confidence belt for 90% C.L. upper limits for the mean of a Gaussian, in FIG. 3. Standard confidence belt far 90% C.L. central confidence intervals for the mean of a
units of the rms deviation. The second line in the belt is at r = 400, Ganssian. in units of the rms deviation.

When should you give a central interval and when an upper limit?

Let us suppose, for example, that Physicist X takes the following attitude in an experiment designed to measure a small quantity:
“If the result x is less then 30, | will state an upper limit from the standard tables. If the result is greater than 3o, | will state a
central confidence interval from the standard tables.” We call this policy “flip-flopping” based on the data. Furthermore, Physicist

X may say, “If my measured value of a physically positive quantity is negative, | will pretend that | measured zero when quoting a
ronfidence interval” which introdiicec come concervaticm
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We need an ordering principle

Feldman & Cousins ordering principle :

R =Pn|pw)/P(m|u pest)
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FIG. 4. Plot of confidence belts implicitly used for 90% C.L. confidence intervals (vertical
intervals between the belts) quoted by flip-flopping Physicist X, described in the text. They are
not valid confidence belts, since they can cover the true value at a frequency less than the stated
confidence level. For 1.36 < p < 4.28, the coverage (probability contained in the horizontal
acceptance interval) is 85%.



Poisson with Background

TABLE 1. Ilustrative calculations in the confidence belt construction for signal mean u in the

presence of known mean background b = 3.0. Here we find the acceptance interval for g = 0.5.

n P(n|u) Hbest P(n|ppest) R rank L. central
0 0.030 0. 0.050 0.607 6

1 0.106 0. 0.149 0.708 5 Vv Vv
2 0.185 0. 0.224 0.826 3 \/ \/
3 0.216 0. 0.224 0.963 2 Vv Vv
4 0.189 1. 0.195 0.966 1 N, of
5 0.132 2. 0.175 0.753 4 Vv Vv
6 0.077 3. 0.161 0.480 7 Vv Vv
7 0.039 4. 0.149 0.259 \/ \/
8 0.017 5. 0.140 0.121 Vv

9 0.007 6. 0.132 0.050 Vv
10 0.002 y g 0.125 0.018 Vv
11 0.001 8. 0.119 0.006 Vv

P(n|p) = (1 + b)" exp(—(p + b)) /nl
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FIG. 10. Plot of our 90% confidence intervals for mean of a Gaussian, constrained to be
non-negative, described in the text.



Summary

A Neyman construction is the most technically straightforward
frequentist way to provide a confidence interval.

Profile likelihoods are the currently best accepted frequentist
techniques for handling nuisance parameter uncertainties.

However it requires an ordering principle to ensure perfect
coverage for small signals(FC Confidence intervals)

Comparison of Frequentist and Bayesian statistics
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FIG. 5. Standard confidence belt for 90% C.L. upper limits, for unknown Poisson signal mean
i in the presence of Poisson background with known mean b = 3.0. The second line in the belt is
at n = +oc.
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FIG. 6. Standard confidence belt for 90% C.L. central confidence intervals. for unknown Poisson
signal mean g in the presence of Poisson background with known mean b = 3.0.
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FIG. 7. Confidence belt based on our ordering principle, for 90% C.L. confidence intervals for
unknown Poisson signal mean g in the presence of Poisson background with known mean b = 3.0.
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FIG. 8. Upper end p» of our 90% C.L. confidence intervals [p1;, p»]. for unknown Poisson signal
mean p in the presence of expected Poisson background with known mean b. The curves for the
cases ng from 0 through 10 are plotted. Dotted portions on the upper left indicate regions where
41 is non-zero (and shown in the following figure). Dashed portions in the lower right indicate
regions where the probability of obtaining the number of events observed or fewer is less than 1%.
even if p = ().
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FIG. 9. Lower end p; of our 90% C.L. confidence intervals [j;. us]. for unknown Poisson signal
mean p in the presence of expected Poisson background with known mean b. The curves correspond
to the dotted regions in the plots of y» of the previous figure, with again ng = 10 for the upper
right curve, etc.



NEW INTERVALS FROM AN ORDERING PRINCIPLE
BASED ON LIKELIHOOD RATIOS

e Poisson with Background
e (Gaussian with Boundary at Origin



Application to Neutrino Oscillation searches
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FIG. 11. Calculation of the confidence region for an example of the toy model in which
sin?(26) = 0. The 90% confidence region is the area to the left of the curve.
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FIG. 12. Calculation of the confidence regions for an example of the toy model in which
Am?* = 40 (eV/e?)? and sin®(20) = 0.006. as evaluated by the proposed technique and the Raster
Scan.
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FIG. 15. Comparision of the confidence region for an example of the toy model in which

FIG. 14. Regions of significant under- and overcoverage for the Global Scan. sin?(260) = 0 and the sensitivity of the experiment, as defined in the text.



The Profile Likelihood Technique in a fit

@ In a fit to measurements X, you vary the parameters 3 and either
maximize the Likelihood In £(xX; 3) (or minimize the x?)
@ In special cases: (and no correlations)

gln=yf = Y EE)

2
i i
Toy Higgs mass distribution
¥2 I ndf 69.83 / 55
& Prob 0.08596
350 WL nsig 32.33 + 10.27
B mass 1257 +0.7
- width 1.825 + 0.578
300 % backg1 7.917 + 0.066
backg2 -0.02012 + 0.00053
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@ Quantify the agreement between each model point and the data:

Nobs PY\2
M; — Oy(P
Y2 = E (M; 02'( ) + Constraints
g~
=1 !

@ Advanced MCMC scans with automatically adapting proposal density
width




