Spin-Orbital Angular Momentum Interaction in Heavy-Ion Collisions

Bedanga Mohanty
NISER

Based on : arXiv:1910.14408 (ALICE) and Nature 548, 62 (2017) (STAR) + QM2019 talks by Sourav Kundu (ALICE) and Subhash Singha (STAR)

Outline:

- High Energy Heavy-Ion Collisions
\square Polarization of Lambda Baryons
\square Spin Alignment of Vector Mesons (spin-1 particles)
\square Summary

Heavy-Ion Collisions

Relativistic Heavy-Ion Collisions made by Chun Shen

Initial energy
density
Hadronization

Heavy-Ion Collisions

Reaction Plane: Impact Parameter and Beam Axis

L and B perpendicular to Reaction Plane

Heavy-Ion Collisions

Angular Momentum \& Magnetic Field in Nature

Nature	Angular Momentum in units of $\mathbf{h} / \mathbf{2} \boldsymbol{\pi}$
Electron in hydrogen atom	$\sqrt{ }(1+1)$
${ }^{132} \mathrm{Ce}$ (highest for a nuclei)	70
Heavy Ion Collisions	$\mathbf{1 0} \mathbf{4}-\mathbf{1 0} 0^{5}$
Earth	10^{6}

Want to focus on	Nature	Magnetic Field in Tesla
studies to see the effect of large Angular Momentum and	Human Brain	10^{-12}
and Magnetic Field in	Earth's Magnetic field	10^{-5}
Heavy-ion collisions	Refrigerator Magnet	10^{-3}
	Loudspeaker Magnet	1
	Strongest field in lab	10^{3}
	Heavy Ion Collisions	10^{6}

Spin and Angular Momentum

What happens in presence of Angular Momentum

Can we see experimentally the signature of spin-orbit angular momentum interactions for QCD matter produced in heavy-ion collisions?

Λ polarization - RHIC

$\frac{d N}{d \cos \theta^{*}}=\frac{1}{2}\left(1+\alpha_{\mathrm{H}}\left|\overrightarrow{\mathbb{P}}_{\mathrm{H}}\right| \cos \theta^{*}\right)$
decay parameter $\alpha_{\Lambda}=-\alpha_{\bar{\Lambda}}=0.642 \pm 0.013$

$$
\omega=k_{B} T\left(\bar{P}_{\Lambda^{\prime}}+\bar{P}_{\bar{\Lambda}^{\prime}}\right) / \hbar
$$

Nature 548, 62 (2017) (STAR Collaboration) Phys Rev C 98, 14910 (2018) (STAR Collaboration)

$\omega \approx(9 \pm 1) \times 10^{21} \mathrm{~s}^{-1}$

Conclusions

\checkmark Lambda Polarization seen in RHIC Beam Energy Scan Program.
\checkmark Polarization decreases with increase in beam energy
\checkmark Polarization measurements of hadrons emitted from the fluid used to estimate the vorticity
\checkmark First measurement of vorticity done in heavy-ion collisions

Vorticity in Nature

Nature	Vorticity $\mathbf{(s}^{\mathbf{1}} \mathbf{)}$
Solar Sub-surface	10^{-7}
Terrestrial Atmosphere	10^{-5}
Great Red Spot of Jupiter	10^{-4}
Tornado Core	10^{-1}
Heated Soap Bubbles	100
Turbulent flow in superfluid He	150
Heavy Ion Collisions	$\mathbf{1 0}^{\mathbf{7} \cdot \mathbf{1 0}^{\mathbf{2 1}}}$

Angular Distribution of Vector Mesons

$\mathrm{K}^{* 0}$ Vector Meson

- Mass - $896 \mathrm{MeV} / \mathrm{c}^{2}$
- Life time - $4 \mathrm{fm} / \mathrm{c}$
- Spin 1
- Decays to K^{+}and $\pi^{-}(B . R-66 \%)$
- Quark content (d,sbar)

Nucl. Phys. B 15 (1970) 397

$$
\begin{aligned}
\frac{d N}{d \cos \theta d \phi} & =\left\langle\theta, \phi, \lambda_{1}, \lambda_{2}\right| M \rho M^{\dagger}\left|\theta, \phi, \lambda_{1}, \lambda_{2}\right\rangle \\
& =\sum_{\lambda_{V}} \sum_{\lambda_{V^{\prime}}}\left\langle\theta, \phi, \lambda_{1}, \lambda_{2}\right| M\left|\lambda_{V}\right\rangle\left\langle\lambda_{V}\right| \rho\left|\lambda_{V^{\prime}}\right\rangle\left\langle\lambda_{V^{\prime}}\right| M^{\dagger}\left|\theta, \phi, \lambda_{1}, \lambda_{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=\text { Helicities } \\
& \rho=\text { spin density matrix } \\
& M=\text { Decay amplitude }
\end{aligned}
$$

Quantization axis
$>$ Normal to production plane
$>$ Normal to reaction plane

Angular Distribution of Vector Mesons

In terms of spherical harmonics

$$
\frac{d N}{d \cos \theta d \phi}=|C|^{2} \times \sum_{m_{1}, m_{2}} Y_{1, m_{1}}^{*}(\theta, \phi) Y_{1, m_{2}}(\theta, \phi) \rho_{m_{1}, m_{2}}
$$

Integrating over azimuthal angle

$$
\begin{aligned}
\frac{d N}{d \cos \theta} & =|C|^{2} \times \frac{3}{8 \pi}\left[\sin ^{2} \theta \rho_{-1,-1}+2 \cos ^{2} \theta \rho_{0,0}+\sin ^{2} \theta \rho_{1,1}\right] \times 2 \pi \\
& =|C|^{2} \times \frac{3}{4}\left[\sin ^{2} \theta\left(\rho_{-1,-1}+\rho_{1,1}\right)+2 \cos ^{2} \theta \rho_{0,0}\right]
\end{aligned}
$$

Normalized spin density matrix - Trace $=1$

$$
\frac{d N}{d \cos \theta}=N_{0}\left[1-\rho_{0,0}+\cos ^{2} \theta\left(3 \rho_{0,0}-1\right)\right]
$$

Difference between Lambda Baryon and Vector Mesons

Species	\mathbf{K}^{*}	ϕ	Λ
Quark Content	d-bar s	s s-bar	uds
Mass ($\mathrm{MeV} / \mathrm{c}^{2}$)	896	1020	1115
Life time (fm / c)	4	45	Long
Spin (${ }^{\text {P }}$)	1^{-}	$1{ }^{-}$	$1 / 2^{+}$
Decays	Kл	KK	$\mathrm{p} \pi$
Branching Ratio	66\%	49\%	100 \%
Feed-down	Negligible	Negligible	Substantial
Sign of direction of angular momentum	Not required $2^{\text {nd }}$ order EP	Not required $2^{\text {nd }}$ order EP	Required $1^{\text {st }} \text { Order EP }$

Detectors

ALICE@LHC

STAR@RHIC

Particle identification: TPC + TOF
Momentum Measurement TPC (+ITS in ALICE)
Event Plane Angle Measurement (VO in ALICE and TPC/ZDC in STAR

Data Set

Collision system	pp at $13 \mathrm{TeV}, \mathrm{Pb}-\mathrm{Pb}$ at $2.76 \mathrm{TeV}, \mathrm{Au}+\mathrm{Au}$ at 200 and 54.4 GeV
Rapidity	$\|y\|<0.5$
No. of events	$\sim 43 \mathrm{M}(\mathrm{pp}), 14 \mathrm{M}(\mathrm{Pb}-\mathrm{Pb}), 520 \mathrm{M}(\mathrm{Au}+\mathrm{Au} 54.4$ $\mathrm{GeV})$ and $350 \mathrm{M}(\mathrm{Au}+\mathrm{Au} 200 \mathrm{GeV})$
Hadrons	$\mathrm{pp:} \mathrm{~K}^{* 0}$ and ϕ $\mathrm{Pb}-\mathrm{Pb}: \mathrm{K}^{* 0} \phi$ and $\mathrm{K}_{\mathrm{S}}{ }^{\circ}$ $\mathrm{Au}+\mathrm{Au}: \mathrm{K}^{* 0}$ and ϕ
Background	Mixed events (LHC) and Rotational Method (RHIC)
Efficiency x acceptance	Corrected
Quantization axis	pp: Normal to production plane (PP) Pb-Pb: Normal to production plane (PP), event plane (EP) and random event plane (RndEP: randomizing the event plane angle in azimuthal plane) Au + Au: Noraml to Event Plane and 3D random Event Plane

K^{*} Vector Meson

Heavy-Ion collisions

Angular Distribution of Vector Mesons

Bar: Stat. uncertainty on yield
Box: Syst. uncertainty on yield
$-N_{0}\left[\left(1-\rho_{00}\right)+\left(3 \rho_{00}-1\right) \cos ^{2} \theta^{*}\right]$
Variation of fit function due
to syst. uncertainty on ρ_{00}

1. Angular distribution NOT flat for Vector mesons with respect to quantization axis in heavy-ion collisions
2. Angular distribution FLAT for vector mesons with respect to random quantization axis
3. Angular distribution FLAT for spin-0 mesons K0s in heavy-ion collisions
4. Angular distribution FLAT for vector mesons in proton-proton collisions

Spin Alignment of Vector Mesons (Spin 1) and $\mathrm{K}_{\mathrm{s}}{ }^{(}(\operatorname{Spin} 0)$

1. Spin Alignment $\left(\rho_{00}<1 / 3\right)$ observed for Spin 1 particle at Low momentum
2. No spin alignment $\left(\rho_{00} \sim 1 / 3\right)$ observed for Spin 0 particle
3. No spin alignment $\left(\rho_{00} \sim 1 / 3\right)$ observed in proton+proton collisions
4. No spin alignment $\left(\rho_{00} \sim 1 / 3\right)$ observed for random planes

Spin Alignment of Vector Meson

1. Maximum spin alignment observed for midcentral collisions in low $\mathrm{p}_{\mathrm{T}}(3 \sigma$ for $\mathrm{K}^{*} 0$ and 2σ for ϕ)
2. $\rho_{00} \sim 1 / 3$ for high p_{T} vector mesons
3. $\rho_{00} \sim 1 / 3$ for peripheral collisions and deviation from $1 / 3$ small for central collisions

Relation Between EP and PP

$\rho_{00}(\mathrm{PP})-\frac{1}{3}=\left(\rho_{00}(\mathrm{EP})-\frac{1}{3}\right) \times \frac{1+3 v_{2}}{4}$.

The physical picture is that spin alignment with respect to the event plane is coupled to that in the production plane through the elliptic flow of the system.

The ρ_{00} (RndEP) is lower than $1 / 3$ as the quantization axis is always perpendicular to the beam axis, resulting in a residual effect.

Physics Process and Theory Expectation

Physics Process	Theory expectation	Remarks
Vorticity	$\rho_{00}(\omega)<1 / 3$	
Magnetic Field	$\rho_{00}(B)>1 / 3$	Electrically Neutral Vector Mesons
	$\rho_{00}(\mathrm{~B})<1 / 3$	Electrically charged vector mesons
Hadronization	$\rho_{00}(\mathrm{rec})<1 / 3$	Recombination
	$\rho_{00}($ frag $)>1 / 3$	Fragmentation

Data and Theoretical Expectation

Centrality dependence

Centrality dependence of Angular Momentum

Centrality dependence of $\rho_{\text {oo }}$ similar to centrality dependence of angular momentum

Transverse Momentum dependence

Transverse dependence of $\rho_{\text {oo }}$ consistent with polarization of quarks in the presence of large initial angular momentum in heavy-ion collisions and a subsequent hadronization by the process of recombination

Energy Dependence

Looks like no energy dependence of $\rho_{\text {oo }}$
High statistics Beam Energy Scan Phase - II data will clear the picture.

Summary

\checkmark First evidence of spin alignment in vector mesons in high energy heavyion collisions. Both RHIC and LHC observes it.
\checkmark Measurement coupled to Event Plane - vanishes for random Event Plane
\checkmark Spin alignment not observed in proton-proton collisions
\checkmark Spin alignment not observed for spin 0 particles in heavy-ion collisions ${ }^{23 / 25}$

Surprises

$$
\mathrm{P}_{\mathrm{H}} \sim \mathrm{P}_{\mathrm{q}} \quad \text { and } \rho_{00} \sim \mathrm{P}_{\mathrm{q}}{ }^{2}
$$

1.

$\mathrm{K}^{*} 0$ versus ϕ meson at RHIC and LHC

2.

Outlook

A. Theoretical Side:

- The experimental measurements has thrown open challenges to theory

1. Cannot explain Lambda and vector mesons results simultaneously
2. Cannot explain the difference in ρ_{00} values of $K^{*}(<1 / 3)$ and $\phi(>$ $1 / 3$ at RHIC and $<1 / 3$ at LHC) meson at RHIC and LHC
3. Development of proper relativistic spin hydrodynamics
4. Models with conservation of angular momentum, L or $\omega \rightarrow$ spin
B. Experimental Side:

- Precision measurements will allow to also see the signatures of initial magnetic field

1. Lambda and anti-lambda polarization magnitude should be different
2. Charged K^{*} and neutral $\mathrm{K}^{*} \rho_{00}$ magnitude should be different

> Establishing \& proper treatment of initial conditions in heavy-ion collisions could have impact on the physics and discoveries in the area

Prof. Rajiv Gavai

1. Constant source of support for my work

2. Physics link: Critical Point Search in the QCD Phase Diagram

From: Bedanga Mohanty bedanga@gmail.com
Date: Thu, Jun 25, 2009 at 7:16 PM
Subject: Net proton - event statistics
To: gavai@theory.tifr.res.in

Dear Prof. Gavai,

We were discussing how the event statistics will affect the net-proton distribution.

2. Great Support towards building up the QGP group at NISER
3. Borrowed the following quote of Nelson Mandela -
"I HAVE WALKED THAT LONG ROAD TO FREEDOM. I have tried not to falter; I have made missteps along the way. But I have discovered the secret that after climbing a great hill, one only finds that there are many more hills to climb. I have taken a moment here to rest, to steal a view of the glorious vista that surrounds me, to look back on the distance I have come. But I can only rest for a moment, for with freedom come responsibilities, and I dare not linger, FOR MY LONG WALK IS NOT YET ENDED"

- From his autobiography Long Walk to Freedom, published in 1994.

Back Up

