Spin-Orbital Angular Momentum Interaction in Heavy-Ion Collisions

Bedanga Mohanty NISER

Based on : arXiv:1910.14408 (ALICE) and Nature 548, 62 (2017) (STAR) + QM2019 talks by **Sourav Kundu** (ALICE) and **Subhash Singha** (STAR)

Outline:
High Energy Heavy-Ion Collisions
Polarization of Lambda Baryons
Spin Alignment of Vector Mesons (spin-1 particles)
Summary

Heavy-Ion Collisions

Heavy-Ion Collisions

Heavy-Ion Collisions

Angular Momentum & Magnetic Field in Nature

Nature	Angular Momentum in units of h/2π
Electron in hydrogen atom	√1(1+1)
¹³² Ce (highest for a nuclei)	70
Heavy Ion Collisions	104 - 105
Earth	10 ⁶

Want to focus on studies to see the	Nature	Magnetic Field in Tesla
	Human Brain	10-12
Angular	Earth's Magnetic field	10-5
Momentum	Refrigerator Magnet	10-3
and Magnatia Field	Loudspeaker Magnet	1
in Heavy-ion collisions	Strongest field in lab	10 ³
	Neutron Star	10 ⁶
	Heavy Ion Collisions	10 ¹⁵ - 10 ¹⁶

Spin and Angular Momentum

Can we see experimentally the signature of spin-orbit angular momentum interactions for QCD matter produced in heavy-ion collisions ?

Λ polarization - RHIC

$$\frac{dN}{d\cos\theta^*} = \frac{1}{2} \left(1 + \alpha_{\rm H} |\vec{\mathcal{P}}_{\rm H}| \cos\theta^* \right)$$

decay parameter $\alpha_{\Lambda} = -\alpha_{\overline{\Lambda}} = 0.642 \pm 0.013$

$$\boldsymbol{\omega} = k_B T \left(\overline{\mathcal{P}}_{\Lambda'} + \overline{\mathcal{P}}_{\overline{\Lambda}'} \right) / \hbar$$

Nature 548, 62 (2017) (STAR Collaboration) Phys Rev C 98, 14910 (2018) (STAR Collaboration)

Conclusions

✓Lambda Polarization seen in RHIC Beam Energy Scan Program.

✓ Polarization decreases with increase in beam energy

 ✓ Polarization measurements of hadrons emitted from the fluid used to estimate the vorticity

✓ First measurement of vorticity done in heavy-ion collisions

Vorticity in Nature

Nature	Vorticity (s ⁻¹)
Solar Sub-surface	10-7
Terrestrial Atmosphere	10-5
Great Red Spot of Jupiter	10-4
Tornado Core	10-1
Heated Soap Bubbles	100
Turbulent flow in superfluid He	150
Heavy Ion Collisions	10 ^{7 -} 10 ²¹

Angular Distribution of Vector Mesons

Angular Distribution of Vector Mesons

In terms of spherical harmonics

$$\frac{dN}{dcos\theta d\phi} = |C|^2 \times \sum_{m_1,m_2} Y^*_{1,m_1}(\theta,\phi) Y_{1,m_2}(\theta,\phi) \rho_{m_1,m_2}$$

Integrating over azimuthal angle

$$\begin{split} \frac{dN}{d\cos\theta} &= |C|^2 \times \frac{3}{8\pi} \left[sin^2 \theta \rho_{-1,-1} + 2cos^2 \theta \rho_{0,0} + sin^2 \theta \rho_{1,1} \right] \times 2\pi \\ &= |C|^2 \times \frac{3}{4} \left[sin^2 \theta \left(\rho_{-1,-1} + \rho_{1,1} \right) + 2cos^2 \theta \rho_{0,0} \right] \end{split}$$

Normalized spin density matrix – Trace = 1

$$\frac{dN}{d\cos\theta} = N_0 \left[1 - \rho_{0,0} + \cos^2\theta \left(3\rho_{0,0} - 1 \right) \right]$$

 $\rho_{00} = 1/3 \rightarrow \text{No Spin Alignment}$

11/25

Difference between Lambda Baryon and Vector Mesons

Species	K *0	φ	Λ
Quark Content	d-bar s	s s-bar	uds
Mass (MeV/c ²)	896	1020	1115
Life time (fm/c)	4	45	Long
Spin (J ^P)	1-	1-	1/2+
Decays	Κπ	KK	рл
Branching Ratio	66%	49%	100 %
Feed-down	Negligible	Negligible	Substantial
Sign of direction of	Not required	Not required	Required
angular momentum	2 nd order EP	2 nd order EP	1 st Order EP

Detectors

Particle identification: TPC + TOF Momentum Measurement TPC (+ITS in ALICE) Event Plane Angle Measurement (V0 in ALICE and TPC/ZDC in STAR

Data Set

Collision system	pp at 13 TeV, Pb-Pb at 2.76 TeV, Au+Au at 200 and 54.4 GeV
Rapidity	y < 0.5
No. of events	~ 43 M (pp), 14 M (Pb-Pb), 520 M (Au+Au 54.4 GeV) and 350 M (Au+Au 200 GeV)
Hadrons	pp: K^{*0} and ϕ Pb-Pb: $K^{*0} \phi$ and K_S^{0} Au+Au: K^{*0} and ϕ
Background	Mixed events (LHC) and Rotational Method (RHIC)
Efficiency x acceptance	Corrected
Quantization axis	pp: Normal to production plane (PP) Pb-Pb: Normal to production plane (PP), event plane (EP) and random event plane (RndEP: randomizing the event plane angle in azimuthal plane) Au+Au: Noraml to Event Plane and 3D random Event Plane

K^{*0} Vector Meson

pp collisions

Heavy-Ion collisions

Angular Distribution of Vector Mesons

- 1. Angular distribution NOT flat for Vector mesons with respect to quantization axis in heavy-ion collisions
- 2. Angular distribution FLAT for vector mesons with respect to random quantization axis
- 3. Angular distribution FLAT for spin-0 mesons K0s in heavy-ion collisions
- 4. Angular distribution FLAT for vector mesons in proton-proton collisions

Spin Alignment of Vector Mesons (Spin 1) and K^0_{s} (Spin 0)

- 1. Spin Alignment ($\rho_{00} < 1/3$) observed for Spin 1 particle at Low momentum
- 2. No spin alignment ($\rho_{00} \sim 1/3$) observed for Spin 0 particle
- 3. No spin alignment ($\rho_{00} \sim 1/3$) observed in proton+proton collisions
- 4. No spin alignment ($\rho_{00} \sim 1/3$) observed for random planes

Spin Alignment of Vector Meson

- Maximum spin alignment observed for midcentral collisions in low p_T (3σ for K^{*0} and 2σ for φ)
 - $ho_{00} \sim 1/3$ for high $m p_T$ vector mesons

Relation Between EP and PP

$$\rho_{00}(\text{PP}) - \frac{1}{3} = (\rho_{00}(\text{EP}) - \frac{1}{3}) \times \frac{1+3\nu_2}{4}.$$

The physical picture is that spin alignment with respect to the event plane is coupled to that in the production plane through the elliptic flow of the system.

The ρ_{00} (RndEP) is lower than 1/3 as the quantization axis is always perpendicular to the beam axis, resulting in a residual effect.

Physics Process and Theory Expectation

Physics Process	Theory expectation	Remarks
Vorticity	$\rho_{00}(\omega) < 1/3$	
Magnetic Field	$\rho_{00}(B) > 1/3$	Electrically Neutral Vector Mesons
	ρ ₀₀ (B) < 1/3	Electrically charged vector mesons
Hadronization	ρ ₀₀ (rec) < 1/3	Recombination
	$\rho_{00}(\text{frag}) > 1/3$	Fragmentation

Z. Liang et. al., Phys. Lett. B629, 20 (2005) Y. Yang et. al., Phys. Rev. C 97, 034917 (2018)

Data and Theoretical Expectation

Centrality dependence

Centrality dependence of Angular Momentum

Centrality dependence of $\rho_{\rm oo}$ similar to centrality dependence of angular momentum

Transverse Momentum dependence

Transverse dependence of ρ_{oo} consistent with polarization of quarks in the presence of large initial angular momentum in heavy-ion collisions and a subsequent hadronization by the process of recombination

Energy Dependence

Looks like no energy dependence of ρ_{oo} High statistics Beam Energy Scan Phase – II data will clear the picture.

Summary

- First evidence of spin alignment in vector mesons in high energy heavyion collisions. Both RHIC and LHC observes it.
- Measurement coupled to Event
 Plane vanishes for random Event
 Plane
- Spin alignment **not** observed in proton-proton collisions
 Spin alignment **not** observed for spin 0 particles in heavy-ion collisions 23/25

Surprises

 $P_{H} \sim P_{q}$ and $\rho_{00} \sim P_{q}^{2}$

 K^{*0} versus ϕ meson at RHIC and LHC

2.

Outlook

A. Theoretical Side:

- The experimental measurements has thrown open challenges to theory
- 1. Cannot explain Lambda and vector mesons results simultaneously
- 2. Cannot explain the difference in ρ_{00} values of K* (< 1/3) and ϕ (> 1/3 at RHIC and < 1/3 at LHC) meson at RHIC and LHC
- 3. Development of proper relativistic spin hydrodynamics
- 4. Models with conservation of angular momentum, L or $\omega \rightarrow$ spin

B. Experimental Side:

- Precision measurements will allow to also see the signatures of initial magnetic field
- 1. Lambda and anti-lambda polarization magnitude should be different
- 2. Charged K* and neutral K* ρ_{00} magnitude should be different

Establishing & proper treatment of initial conditions in heavy-ion collisions could have impact on the physics and discoveries in the area

Prof. Rajiv Gavai

1. Constant source of support for my work 2. Physics link: Critical Point Search in the QCD Phase Diagram

From: Bedanga Mohanty bedanga@gmail.com Date: Thu, Jun 25, 2009 at 7:16 PM Subject: Net proton - event statistics To: <qavai@theory.tifr.res.in>

Dear Prof. Gavai,

.

We were discussing how the event statistics will affect the net-proton distribution.

2. Great Support towards building up the QGP group at NISER

3. Borrowed the following quote of Nelson Mandela -

"I HAVE WALKED THAT LONG ROAD TO FREEDOM. I have tried not to falter; I have made missteps along the way. But I have discovered the secret that after climbing a great hill, one only finds that there are many more hills to climb. I have taken a moment here to rest, to steal a view of the glorious vista that surrounds me, to look back on the distance I have come. But I can only rest for a moment, for with freedom come responsibilities, and I dare not linger, FOR MY LONG WALK IS NOT YET ENDED"

- From his autobiography Long Walk to Freedom, published in 1994.

Back Up

