Modeling of Hadronic Interactions

Lecture 2

Ralph Engel
Karlsruhe Institute of Technology (KIT)

Outline

Lecture I - Low- and intermediate-energy interactions

- Particle production threshold: resonances
- Intermediate energies: two-string models
- Extension to nuclei and photons

Lecture 2 - Interactions at very high energy

- Jets and minijets, multiple interactions
- Unitarization and saturation scenarios
- Comparison of models and uncertainties of extrapolations

Lecture 3 - Air shower phenomenology and accelerator data

- Relation between hadronic interactions and air showers
- Accelerator experiments \& discrimination potential of LHC
- Comparison of model predictions with accelerator data

SIBYLL: central \& leading particle production

NA49 p-p and p-C at 158 GeV

leading proton distributions

Simplest interaction scenario: single gluon exchange

Two-string configuration: cut pomeron
QCD color string

Leading particle production: first particle in string fragmentation contains quarks/ diquarks from beam particle

Different implementations

SIBYLL:

strings connected to valence quarks; first fragmentation step with harder fragmentation function

QGSJET:

fixed probability of strings connected to valence quarks or sea quarks; explicit construction of remnant hadron

EPOS:

strings always connected to sea quarks; bags of sea and valence quarks fragmented statistically

EPOS: remant vs. string contributions

EPOS: change from remanant-dominated to string-dominated particle production

Transition from intermediate to high energy

Intermediate energy:

- $E_{\text {lab }}<I, 500 \mathrm{GeV}$
- $E_{c m}<50 \mathrm{GeV}$
- dominated by valence quarks

Lifetime of fluctuations $\quad \Delta t \approx \frac{1}{\Delta E}=\frac{1}{\sqrt{p^{2}+m^{2}}-p}=\frac{1}{p\left(\sqrt{1+m^{2} / p^{2}}-1\right)} \approx \frac{2 p}{m^{2}}$

High energy regime:

- $E_{\text {lab }}>21,000 \mathrm{GeV}$
- $E_{c m}>200 \mathrm{GeV}$
- dominated by gluons and sea quarks

Geometric interpretation of collision at high energy

Hadrons filled with partons from fluctuations
frozen in time (relative to time scale of interaction)

Peripheral collision:

only one parton-pair interacting

Central collision:

several parton-pairs interacting

Interaction of two parton pairs

Two soft interactions

Generic diagram of interaction of two parton pairs

- gluon exchange between each pair produces two strings
- sea quarks needed for string ends (different combinations possible)
- other sea quark pairs possible but not explicitly simulated
- each string fragments into hadrons with small transverse momenta

Transition from intermediate to high energy

Intermediate energy:

- $E_{\text {lab }}<I, 500 \mathrm{GeV}$
- $E_{c m}<50 \mathrm{GeV}$
- dominated by valence quarks

Lifetime of fluctuations $\quad \Delta t \approx \frac{1}{\Delta E}=\frac{1}{\sqrt{p^{2}+m^{2}}-p}=\frac{1}{p\left(\sqrt{1+m^{2} / p^{2}}-1\right)} \approx \frac{2 p}{m^{2}}$

High energy regime:

- $E_{\text {lab }}>21,000 \mathrm{GeV}$
- $E_{c m}>200 \mathrm{GeV}$
- dominated by gluons and sea quarks

Scattering of quarks and gluons: jet production

Interpretation within perturbative QCD

QCD predictions known for parton-parton cross sections

Terminology

Soft interaction: no large momentum transfer Hard interaction: large momentum transfer ($|\mathrm{t}|>2 \mathrm{GeV}^{2}$)

Perturbative QCD predictions for parton densities

Evolution of parton number given by DGLAP equation (and non-linear versions of it)

HERA data

$$
\frac{d f_{i}\left(x, Q^{2}\right)}{d \log Q^{2}}=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \int_{x}^{1} \frac{d y}{y} \sum_{j} f_{j}\left(y, Q^{2}\right) P_{j \rightarrow i}\left(\frac{x}{y}\right) \longleftarrow \quad \begin{aligned}
& \text { Prediction of } \\
& \text { perturbative QCD }
\end{aligned}
$$

Minijet model: rise of cross section due to jet production

QCD parton model: minijets

Proton-proton cross section

$$
\sigma_{Q C D}=\sum_{i, j, k, l} \frac{1}{1+\delta_{k l}} \int d x_{1} d x_{2} \int_{p_{\perp} \text { curf }} d p_{\perp}^{2} f_{i}\left(x_{1}, Q^{2}\right) f_{j}\left(x_{2}, Q^{2}\right) \frac{d \sigma_{i, j-k, l}}{d p_{\perp}}
$$

Parton densities not known at very low \mathbf{x}

$$
\hat{s}=x_{1} x_{2} s \geq 4 p_{\perp}^{2}
$$

Dependence on transverse momentum cutoff

Factor ~ 150

Selecting different values for cutoff does not help

Cross section of new interaction process of minijet production cannot simply be added to cross section from soft interactions

Solution: Multiple parton-parton interactions

Proton-proton cross section

QCD prediction:

inclusive cross section

Average number of minijet pairs

$$
\left\langle n_{\mathrm{jet}}\right\rangle=\frac{\sigma_{\mathrm{QCD}}}{\sigma_{\mathrm{ine}}}
$$

Poissonian probability distribution

Peripheral collision: only very few parton-pairs interacting

Central collision:

many parton-pairs interacting

$$
P_{n}=\frac{\left\langle n_{\operatorname{hard}}(\vec{b})\right\rangle^{n}}{n!} \exp \left(-\left\langle n_{\text {hard }}(\vec{b})\right\rangle\right)
$$

mean number of
Need to know mean number of interactions as function of impact parameter interactions for given impactparameter of collision

Minijet model: underlying ideas (unitarization)

Overlap function

$$
\begin{aligned}
A(s, \vec{b})=\int & d^{2} \vec{b}_{1} d^{2} \vec{b}_{2} \\
& A_{p}\left(s, \vec{b}_{1}\right) A_{p}\left(s, \vec{b}_{2}\right) \delta\left(\vec{b}-\vec{b}_{1}-\vec{b}_{2}\right)
\end{aligned}
$$

(side view)
(view long beam axis)

Independent interactions:
Poisson distribution
$P_{n}=\frac{\left\langle n_{\text {hard }}(\vec{b})\right\rangle^{n}}{n!} \exp \left(-\left\langle n_{\text {hard }}(\vec{b})\right\rangle\right)$

$$
\left\langle n_{\text {hard }}(\vec{b})\right\rangle=\sigma_{\mathrm{QCD}} A(s, \vec{b})
$$

$$
\sigma_{\mathrm{ine}}=\int d^{2} \vec{b} \sum_{n=1}^{\infty} P_{n}=\int d^{2} \vec{b}\left(1-\exp \left\{-\sigma_{\mathrm{QCD}} A(s, \vec{b})\right\}\right)
$$

Classic minijet model: free parameters

$$
\sigma_{\text {ine }}=\int d^{2} \vec{b}\left(1-\exp \left\{-\sigma_{\text {soft }} A_{\text {soft }}(s, \vec{b})-\sigma_{\mathrm{QCD}} A_{\text {hard }}(s, \vec{b})\right\}\right)
$$

- Soft cross section
- Transverse momentum cutoff for QCD cross section
- Soft and hard profile functions

Classic Minijet Model (SIBYLL I.7):

- Soft cross section const.
- Transverse momentum cutoff energy-independent
- Profile functions taken from form factor

$$
\begin{aligned}
A_{p p}(v, \vec{B}) & =\frac{v^{2}}{96 \pi}(v|\vec{B}|)^{3} K_{3}(v|\vec{B}|) \\
A_{\pi p}\left(v, \mu_{\pi}, \vec{B}\right) & =\frac{1}{4 \pi} \frac{v^{2} \mu_{\pi}^{2}}{\mu_{\pi}^{2}-v^{2}}\left((v|\vec{B}|) K_{1}(v|\vec{B}|)-\frac{2 v^{2}}{\mu_{\pi}^{2}-v^{2}}\left[K_{0}(v|\vec{B}|)-K_{0}\left(\mu_{\pi}|\vec{B}|\right)\right]\right)
\end{aligned}
$$

Problem: Very high parton densities (saturation)

Saturation:

- parton wave functions overlap
- number of partons does not increase anymore at low x
- extrapolation to very high energy unclear

Simple geometric criterion
nucleus

RHIC data very important
nucleon

SIBYLL 2.I cross section fits

Low energy:
parametrizations of data are used

Different implementations of two-gluon scattering

Kinematics etc. given by parton densities and perturbative QCD

Two strings stretched between quark pairs from gluon fragmentation

Multiple soft and hard interactions

$$
\sigma_{n_{s}, n_{h}}=\int d^{2} b \frac{\left[n_{\mathrm{soft}}(b, s)\right]^{n_{s}}}{n_{s}!} \frac{\left[n_{\mathrm{hard}}(b, s)\right]^{n_{h}}}{n_{h}!} e^{-n_{\mathrm{hard}}(b, s)-n_{\mathrm{soft}}(b, s)}
$$

$$
n_{s}=I, n_{h}=0
$$

$$
n_{s}=1, n_{h}=1
$$

Comparison with collider data

Note: one cut pomeron means one soft or hard interaction

Charged particle multiplicity distribution at 200 GeV cms.

Charged particle pseudorapidity distributions

Comparison of high energy interaction models

- universal model

DPMJET II. 5 and III
(Ranft / Roesler, RE, Ranft, Bopp)

- saturation for hard partons via geometry criterion
- HERA parton densities

EPOS

(Pierog, Werner)

- universal model
- saturation by RHIC data parametriztions
- custom-developed parton densities
- no saturation corrections
- old pre-HERA parton densities
- replaced by QGSJET II
- saturation correction for soft partons via pomeron-resummation
- custom-developed parton densities

SIBYLL 2.I
(Engel, RE, Fletcher, Gaisser, Lipari, Stanev)

- saturation for hard partons via geometry criterion
- HERA parton densities

High parton densities: modification of minijet threshold

QGSJET II: high parton density effects

Re-summation of enhanced pomeron graphs

(Ostapchenko, PLB 2006, PRD 2006)

EPOS I.6x - high parton density effects (i)

$$
\begin{aligned}
& \text { No effective coupling } \\
& \qquad A_{\text {pom }} \sim\left(x_{1} x_{2}\right)^{\beta} \\
& \text { With effective coupling } \\
& A_{\text {pom }} \sim x_{1}^{\beta} x_{2}^{\beta-\varepsilon}
\end{aligned}
$$

Parametrization

$$
\begin{aligned}
\varepsilon_{S} & =a_{S} \beta_{S} Z \\
\varepsilon_{H} & =a_{H} \beta_{H} Z
\end{aligned}
$$

EPOS I.6x - high parton density effects (ii)

(Werner et al., PRC 2006)

EPOS I.99: see Tanguy Pierog's lecture

$$
\begin{aligned}
Z_{T}(i, j)= & z_{0} \exp \left(-b_{i j}^{2} / 2 b_{0}^{2}\right) \\
& +\sum_{\substack{\text { target nucleons } \\
j^{\prime} \neq j}} z_{0}^{\prime} \exp \left(-b_{i j^{\prime}}^{2} / 2 b_{0}^{2}\right)
\end{aligned}
$$

$$
b_{0}=w_{B} \sqrt{\sigma_{\text {inel } p p} / \pi} \quad \begin{aligned}
& z_{0}=w_{Z} \log s / s_{M} \\
& z_{0}^{\prime}=w_{Z} \sqrt{\left(\log s / s_{M}\right)^{2}+w_{M^{2}}},
\end{aligned}
$$

Comparison of model predictions

Collider distributions: reasonable agreement

Many updated comparisons of models and data available, see talk by Tanguy Pierog

(Heck 2005)

Particle production cross section (p-air)

Differences stem from different effective profile functions and saturation models

Cross section extrapolations very similar

Violation of Feynman scaling

Scaling: model predictions (i)

Scaling: model predictions (ii)

Black disk scenario of high energy scattering ?

High energy scattering

Black Disk Model

- large number of minijets
- high perturbative saturation scale
- complete disintegration of leading particle

Not implemeted as dominating process in current models

Some conclusions

Minijet production changes characteristics of interactions

- Predicted within perturbative QCD
- Natural source of scaling violations
- Parameters for calculation very uncertain
- Saturation effects very important

Models construction

- Construction elements very similar
- Model philosophies complementary
- Tuned to data from fixed target and collider experiments
- Differences in treatment of key questions for high-energy extrapolation
- Predicted particle production still very similar
- Models do not cover full range of uncertainty

Baryon pair-production not understood

Many strings of low mass

EPOS: modification of fragmentation parameters as function of string density (RHIC data)

