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Statistics
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The science of learning from data by identifying the properties of populations of 
natural phenomena and quantify our corresponding knowledge and uncertainty.


Statistics allows to design better experiments and make the most of our 
observations. It offers a structure to frame our results, interpretate them to derive 
implications, and a language to communicate them. Typical tasks

• Measure the value of a physics parameter —  point estimation


• Finding its uncertainty — interval estimation


• Comparing one hypothesis agains another (in search for anomalies/
discoveries) —   hypothesis testing


• Comparing one hypothesis against all others —  Goodness of fit



Understanding nature from blurred observations

3



Top-down vs bottom-up understanding

4

Similar to low-level perception processes, HEP advances through the interplay 
of top-down (theory-guided) and bottom-up (data-driven) processing.


The need for detail (quality and quantity of data) is driven by the distinctiveness 
of the phenomena and our level of familiarity with it.


When a roadmap suggest “what to expect”, a little data goes a long way (top-
down dominates). 


Since the 80’s, the standard model has served us well as a road map to guide 
HEP’s exploration, because it offered a few robust no-lose theorems that led to  
the discovery of the W and Z bosons, the top quark, and the Higgs boson. 



1967-2012
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The standard model is now complete. It is robust at the energies explored so far 
and technically up to 1010 GeV.                                                


Are we done?



2012 — …: a new data driven era?

6

No. 


Good news: many fundamental questions remain open: why 3 quark and lepton 
families? Why their mass hierarchies? Origin of CP violation? What’s dark matter? 
And dark energy? [your favorite question here]


Bad news is that top-down luxury is over.                                                                     
[Is that truly bad news for experimentalists?]


It is likely that next progress on some of the most compelling questions will come 
through the bottom-up, brute-force approach: look and try to make a sense of lots 
of quality data from many different experimental environments.


A particularly fitting time to focus on methods of extracting information from the 
data. 



What to expect
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This won’t be a tutorial/cookbook. There won’t be any hands on.


I’ll insist on few fundamental concepts. Hope this will consolidate (or establish) 
foundations for you to dig further, enrich what you already know, and expose you to 
some different points of view.


These lectures won’t be forward-looking. Rather focused on the core basics. 
Excellent material from CERN schools and and online stuff by K. Cranmer, M. 
Kagan, A. Rogozhnikov, T. Junk etc. is great to fill you in on most recent/ongoing 
developments. (Detailed refs will be given on our last day)


I will take it easy. My goal is that you pick up most of this in real time and interrupt 
me with questions when not. 


I have no lecture notes. So tried to compose fairly descriptive slides aiming at  
making the logic decipherable offline too. Additional materials and some derivations 
in the backup for reference. Please let me know of mistakes. 



Outline
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Today, Wed Dec 6 —  Quick recap on basics. Statistical inference. Bayesian vs 
frequentist. Pdf vs likelihood. Maximum likelihood.


Tomorrow, Thu Dec 7 — Confidence-intervals. Likelihood-ratio ordering 
Systematic uncertainties. Profile-likelihood ratio. Hypothesis testing.


Fri, Dec 8 —  Introduction to statistical learning, linear discrminants, the 
multilayer perceptron, decision trees. 



Many thanks
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to G. Punzi, B. Cousins J. Heinrich, L. Ristori, E. Milotti,       
D. Derkach

for enlightning many of the notions discussed here in formal lectures, discussions, 
etc…

for making your slides publicly available so that I could steal from them.

to G. Cowan, K. Cranmer,  A. Rogozhnikov, H. Prosper, M. Kagan,         
T. Junk, T. Hastie, F. James, R. Barlow, J. Rademacker, L. Lyons,             
B. Cousins, T. Dorigo, N. Berger, E. Gross 



Quick recap of the basics
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Fundamental notions
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Random event: an event that has >1 possible outcome. The outcome isn’t 
predicted deterministically, but a probability* for each outcome is known. 


Random events are associated to variates (“(random) variables”, “observables”) x, 
which take different values, corresponding to different possible outcomes. Each x 
value has its probability* p(x). The outcomes generate a probability distribution of x. 


A collection of random events forms a population: the hypothetical infinite set of 
repeated independent and (nearly) identical experiments. Observed distributions are 
interpreted as finite-size random samplings from the corresponding population’s 
parent distributions.


Goal: quantify the collective properties of the parent distributions, not of any 
individual element of the sample.


*Probability intended as limit of long term frequency, more later.



Parent distribution
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expt #1

expt #2

expt #3

expt #N

Parent distribution

…

…

…



You do it everyday
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Most of you regularly quote uncertainties 
in counting experiments.                                                               
E.g, in an histogram, a bin with N entries  
has an error bar (e.g., of length √ N)


What that bar exactly mean?                                   


Am I really uncertain if in my sample N 
events are falling in that bin? 

The bar represents the fluctuations in the counts of that bin one expects if the 
experiment was repeated. I.e, the fluctuations between samples drawn from the 
same parent distribution.  

?


https://wwwusers.ts.infn.it/~dtonelli/HCPSS2017/DataPointsErrorIvovanVulpen.pdf for some fun



Data location
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Simple and most common quantity to summarize the sample information into a single 
number. 


For a sample of N events, each associated with a variable xi and binned into an 
histogram with n bins, the sample mean is

Unbinned sample mean x̄ =
1

N

NX

i=1

xi

Binned sample mean x̄ =
1

N

nX

j=1

xjnj

Linear: ↵x+ y = ↵x+ y



Data dispersion
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The mean says nothing about the dispersion of data, another key information to 
grasp the features of a sample

variance: average of the difference 
square from the mean

V (x) = (x� x)2 =
1

N

NX

i=1

(xi � x)2

Easier to remember: the mean of the squares minus the square of the mean

V (x) = x2
i � x2

The root of the variance is the standard deviation, √V(x) = σ. Typically used as a 
standard measure of spread.



Multiple dimensions
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In general, more than one variable is 
associated to each random event


Take two variables (easy to generalise 
further): each of N statistical experiments 
observes of a pair of numbers {(x1,y1), (x2, 
y2), …, (xN, xN)}


The sample mean and variance are easily 
generalized to estimate the location and 
dispersion of the sample along each axis 
of the multidimensional space.

An additional useful concept relates the dispersions along different axes.



Covariance and correlation
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Easier to remember: the mean of the product minus the product of the means

In N-dimensional data, defines a matrix


Cov has units. Better to use a unitless quantity, the Pearson linear correlation

Cov(x, y) = xy � x y

Cov(x, y) =
1

N

NX

i=1

(xi � x)(yi � y)

⇢(x, y) =
Cov(x, y)p
V (x)

p
V (y)

=
Cov(x, y)

�x�y

Vij = Cov(x(i), x(j))

and associated correlation matrix ⇢ij =
Vij

�i�j



Correlation and dependence

18

Correlation and dependence between variables are sometimes confused. 


Two variables x and y are (linearly) uncorrelated if ρ(x,y) = 0 


• They are statistically independent if their two-dimensional distribution f(x,y)  
can be factorized into the product f(x,y) = g(x) h(y).  That is, the shape of 
one distribution does not depend on the value of the other variable. 
Information from one variable does not carry information on the other.


• Independent variables are also uncorrelated.


• Uncorrelated variables may still be dependent



In pictures
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correlation strenght says nothing about the “slope”

In all cases below, correlation is zero. But the two variables are clearly not 
independent.


[Wikipedia]



Testing for correlation and dependence

20

Testing for correlations: just look at the correlation coefficients. If they are 
nonzero, variables are certainly dependent. If they are zero, may want to 
check against dependence: check if the distributions of one variable “in 
slices” overlap.

[Cowan]



Correlation and causality
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Often correlations are used to implicate causality as causes of phenomena are 
relevant to “understand what’s going on” and build scientific evidence.


Statistics won’t tell much about causality.


Phenomena A and B that show correlation could mean

• A causes B 


• B causes A


• A third phenomenon C causes both A and B


• Coincidental correlation



Triangulation
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Warm temperatures push people to buy more ice-creams, and also to spend 
more time outside and party, increasing chances that gang members meet and 
get violent.

NYC study in the 80’s



Coincidence
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Sources:National Vital Statistics Reports, US Department of Agriculture,Center for Disease Control and Prevention. Plot: tylervigen.com

http://tylervigen.com
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Applies to continuous variables. Choose a short range Δx of the variable. The 
local frequency of events is approximated by f(x)Δx. 

Probability density function 

25

dF = f(x)dx

f(x) is the probability density function.         

�x

f(x)�x

f(x)

It is a function of the “data” x. 


It is not a probability: has units of x-1 


It is normalized to unity.

As Δx→0, the probability that x is 
contained in the range  x and x + dx                                                             

Typically pdf shape depends on model-
parameters:              “f of x given α”

The equivalent for discrete variables is 
the probability mass function, which has 
no units and is a proper probability

�x



Ubiquitous pdf’s
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A few pdf occur frequently in nearly any statistical problem 


• Gaussian


• Poisson


• Binomial


Be familiar with these (more discussion in backup if needed).                              
Look up  www.fysik.su.se/~walck/suf9601.pdf for a more comprehensive list.


It is generally multidimensional

f(j;n, p) =

✓
n

j

◆
pj(1� p)n�j

f(j;µ) =
µj

j!
e�µ

f(x;µ,�) =
1

�
p
2⇡

e
(x�µ)2

2�2

f(~x; ~m) = f(x1, x2, ..., xn;m1,m2, ...,mm)

http://www.fysik.su.se/~walck/suf9601.pdf


Joint, conditional, marginal
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f(x1, x2; m) is the joint pdf. Contains the 
whole information. Related to 
probability that x1 and x2 assume 
simultaneously values in certain ranges.

f(x2 | x1; m) is the conditional pdf. 
Related to probability that x1 is in a 
certain range, given that x2 has a 
specified defined value.

∫ f(x1, x2; m ) dx2 is the marginal pdf. 
Related to the probability that x1 is in a 
certain range regardless of x2   value 

Generalize to the n-dimensional pdf f(x1, x2, …, xn)

x2

x1

Joint

Conditional 
“plot x2 in a 
slice of x1”

Marginal 
“project x1”



Characterizing the pdf
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The pdf can be used as weight to obtain the average value of any function g(x) of the 
random variable


In analogy with what done for samples, pdfs can be characterized by a few numbers 
that quantify their location and dispersion. 


The expectation value of x is the mean of x

V (x) = hx2i � hxi2 = E[x2]� E2[x] =

Z
(x� hxi)2f(x)dx

Expectation value of g

hg(x)i = E[g(x)] =

Z
g(x)f(x)dx

hxi = E[x] =

Z
xf(x)dx

The expectation value of (x-E[x])2 is the variance of x

Might be nondefined for some pdf. E.g., Cauchy (Breit-Wigner) pdf.



Functions of random variables
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Functions of random variables are themselves random variables.  Take f(x) as pdf 
of the random variable x and y(x) a function of x (e.g., change of variables). 


Conservation of probability between the two metrics yields g(y), the pdf for y(x). 
Because it is an integrated quantity involves the Jacobian.

P (xa < x < xb) =

Z xb

xa

f(x)dx =

Z y(xb)

y(xa)
g(y)dy = P (y(xa) < y < y(xb))

Z y(xb)

y(xa)
g(y)dy =

Z xb

xa

g(y(x))

����
dy

dx

���� dx f(x) = g(y)

����
dy

dx

����therefore

Because

The Jacobian that modifies the volume element makes the mode (peak) of the 
probability density not invariant under change of metric: renders ill-defined the 
inferences based on maximum probability density.



A special case — probability integral transform
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Take x continuous with pdf f(x). Consider the change of variables that transforms 
x into its cumulative y(x), that has pdf g(y).


Using                                          one gets                             which yields g(y) =1


Any continuous distribution can be transformed into an uniform distribution. Or 
alternatively, there is always a metric in which the pdf is uniform:

y(x) =

Z x

�1
f(x0)dx0

f(x) = g(y)

����
dy

dx

����

����
dy

dx

���� = f(x)

• the inverse transformation allows efficient MC generation of p(x) using a 
generator of random numbers between 0 and 1.


• this property questions the special role frequently attributed to uniform priors in 
Bayesian inference (more later)



Inferring from data
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Fundamental ingredients
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Given some data, need to 


1. Identify all relevant observations x;


2. Identify all relevant unknown parameters m;


3. Construct a model for both



The model 
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The model is the mathematical structure 


                                    p(data | physics) = p(x|m)  


that incorporates all the physics, knowledge, intuition to best describe the 
relevant relations between observables x and unknown parameters m.  


It is a probability model — you don’t know exactly what value of x would be 
observed if m had some definite value. 


The width of p(x|m) is connected to the statistical uncertainty of your inference



The approximate model 
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The model p(x|m) is assumed as your best approximation of the actual 
relationshops between m and x relevant for the problem at hand.


Parametrize differences with the actual physics through additional dependencies 
on unknown nuisance parameters — p(x|m,ν).  


The unknown ν values are uninteresting for the measurement but do influence its 
outcome.  Lack of knowledge of ν introduces an uncertainty in the p(x|m,ν) shape.


Not only you don’t know exactly what value of x would be observed if m had a 
definite value, you don’t even know exactly how probable each possible x value is.  

The uncertainty in the shape of p(x|m) reflects into the systematic uncertainty of 
the inference.    

www-cdf.fnal.gov/physics/statistics/notes/punzi-systdef.ps



Role
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The model is the fundamental building block of most of HEP inference, both in 
Frequentist and Bayesian procedures. The objective step everyone agrees on. 


The model is also the single strongest driver of inference performance: improving 
the model is the best way of improving the inference.


• With parameters m fixed, the model is the probability density function of data, 
which provides the ability to generate pseudodata via Monte Carlo. 


• With data fixed, the model is the likelihood function of the m parameters



Model building
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Three main thrusts for model motivation/justification.

Monte Carlo modeling Data driven modeling
 Effective modeling


- Sideband subtraction

- Same-charge candidates

- Mixed-event candidates

- ABCD methods

- …

]2c) [GeV/s
+π0D(M

2.005 2.01 2.015 2.02

)2 c
C

an
di

da
te

s/
(0

.1
 M

eV
/

0

2

4

6

8

10
310×

WS data
Fit
Background

LHCb

σ/
∆

-5

0

5

Empirical modeling 

[Cranmer]



Tools
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Complexity of models increases with the number of data sets, analysis channels 
in each data set, model components in each channel etc.  


LHC experiments marked an order-of-magnitude increase in model complexity 
with respect to LEP/HERA/Tevatron/B-factories, especially driven by Higgs boson 
search: combinations of O(100) channels, likelihoods with O(1000) parameters.


RooFit (originally developed at BaBar) offer a consistent framework to provide 
tools for collaborative building and handling of complex models.


RooStats interfaces with RooFit to offer higher-level statistical tools based on 
such models.
https://wwwusers.ts.infn.it/~dtonelli/HCPSS2017/RooStats.pdf

https://root.cern.ch/roofit-20-minutes



Inference
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The model gives probability to observe a certain set of data assuming some physics


                p(data | physics) is known. 


Forward process. From physics to data occurs in 


• running experiments (physics true but unknown) and 


• simulation (physics known but not necessarily true).


The backward process from data to physics is the inference: make objective and 
quantitative statements about a population when only a sample of the possible 
observations is available.                                                                                                        
Such generalization isn’t generally possible using the certainty of deductive logic. 
Unobservability of the parent distribution, but only of a random sampling of it, 
imposes assessments of probability (or confidence, or uncertainty)



Probability
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Frequentist —  conceive repeated 
independent samples


• Uses information observed in data 
(and that could have been observed 
in other trials).


• Data are random, theories not.   
Only applies to repeatable “events”. 
Restricts to deductions based on     
p(data | theory). Favored theories 
are those for which our 
observations are more usual. 

P (A) = lim
N!1

(NA/N)

Bayesian — subjective degree of belief


• combines info from observed data 
with subjective judgment. Same data 
with different analysers may yield 
inconsistent results.


• Treat as random variable any 
unknown. Broader applications,  
including to theories/hypotheses.


• Addresses p(theory | data) the 
inductive reasoning one is interested 
to. 

Two approaches: different notions of probability yield differing inferences.



In short
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Bayesians address the question 
everyone is interested in, by using 

assumptions no-one believes

Frequentist use impeccable logic 
to deal with an issue of no interest 

to anyone.

[Lyons through Cranmer]



Whole space
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In both cases, for probabilities to be well 
defined, the whole space or sample space 
need be defined (determines normalization)

Whole space can be thought as the space of available possibilities given (i.e., 
conditional to) the assumptions associated with the model (e.g., was a Poisson 
process, whether or not background is in..)

“90% of our flights arrive on time”                                                                    
Flight delayed several hours are canceled, not ‘delayed’, so they get excluded 
from our sample space.


“Our survey shows that most people lose 5 Kg in a month on this diet”     
Happy customers who lost weight are most likely to respond to our survey. The 
ones who gained weight most likely threw away our survey postcard.



Bayesian inference
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Conditional probabilities
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 P(A and B)  = 

Probability for 
jointly observing 

A and B  

(Conditional) 
probability for 

A given B 

(Marginal) 
probability 

for B 

{  P(A|B) * P(B) 

 P(B|A) * P(A)  

(Conditional) 
probability for 

B given A 

(Marginal) 
probability 

for A 



Bayes’ theorem
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Yields a key relation between conditional and marginal probabilities.


• P(B|A) is the conditional probability for B given A. Also called posterior because 
evaluated after fixing a specific value of A


• P(A|B) is the conditional probability of A given B


• P(B) is the prior probability for B, evaluated before knowing any information on A


• P(A) is the marginal (or “prior”) probability for event A. Serves as normalization.



Probability, conditional probability and Bayes 
Theorem — in pictures
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Remember 
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P(A|B) is NOT equal to P(B|A).


Variable A: “pregnant”, “not pregnant”


Variable B: “male”, “female”.


P(pregnant | female) ~ 3% but


P(female | pregnant) >>> 3% !
[Lyons]



Remember 

47



Applying Bayes’ theorem to inference
Take x, an observable random variable, and m, an  inobservable random variable, 
with known probability distribution p(x,m).  Observe x (“perform a measurement of 
x”), what can I say about m?  Want to know p(m|x).


Bayes theorem tells me all I possibly need. Allows determining the “a posteriori” 
probability for any value of m (look at backup slides for an elementary example) 
 
 

If x and m are independent p(x|m) = p(x) and therefore p(m|x) = p(m). The 
probability a posteriori equals that a priori: measurement is non informative

48

Model Prior probability

Normalization
Posterior probability

p(m|x) = p(x|m)⇥ p(m)

p(x)



Prior
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Algorithm to identify b-jets. 


Run it on a sample of b-jets 
and a sample of non-bjets 
and plot


• abscissa: p( btag | b-jet) 


• ordinate: p(nobtag | non 
b-jet)


for each algorithm setting Efficiency on b events

1 
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b 
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Given a sample of jets, what fraction are b-jets? I.e., what is p(b-jet| btag)?

[Cousins]



Prior

50

Efficiency on b events

1 
- e

ffi
ci

en
cy

 o
n 

no
n-

b 
ev

en
ts

Need to know the fraction of b-jets in my sample, that is the prior p(b-jet).

[Cousins]

Cannot answer.



Additional material



Sample statistics
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Sample mode: value of the variable 
for which the population is larger.


Sample median: mid-range value of 
the variable so that 1/2 of sample has 
larger and 1/2 has smaller values.


Sample mean: arithmetic average of 
the values of the variable across the 
sample



Binomial 
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An intuitive scheme for deducing statistical distributions is to imagine a sample 
of otherwise identical N balls belonging to two classes, black and white

Np white balls and Nq black balls, 
with p+q=1


In a single trial, a ball is selected, the 
color observed, and then the ball is 
returned to the bag.


Can do many trials under identical 
conditions



Binomial (cont’d)
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If one repeats a single trial many times, one expect the fraction of trials yielding 
a white ball to approach Np/N =p.


Consider now pairs of trials: the fraction of trial pairs yielding two white balls 
approaches (Np/N)*(Np/N) = p2  . Similarly, the fraction of trial pairs yielding two 
black balls tends to q2 =(1-p)2 . The fraction of pairs yielding a black and a white 
(no matter the order) is 2pq= 2p(1-p)


Generalizing to n trials, and taking the probability as a limiting frequency, the 
probability of j white balls and (n-j) black balls is

probability for a specific sequence of j 
whites and (n-j) blacks

number of such sequences
f(j;n, p) =

✓
n

j

◆
pj(1� p)n�j



Binomial (cont’d)
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Important to understand and remember the conditions to which the model 
applies: the number n of identical and independent trials is fixed. 


If I had fixed the number of successes j (that is stopping the experiment after 
drawing j white balls), I’would have another distribution!

Binomial widely used for efficiencies — we’ll get back to that.

f(j;n, p) =

✓
n

j

◆
pj(1� p)n�j =

n!

(n� j)!j!
pj(1� p)n�j

hji = np

V (j) = np(1� p)

Expectation value

Variance



Binomial (cont’d)
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Shape and location of the binomial vary for variation of its two parameters



Poisson
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Suppose you don’t know the number of trials. You only know that some rare 
successes can comes out of a continuum of trials.  But you know the average rate 
of success. 

Think of lightnings in a thunderstorm.



Poisson
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When the proportion of successes p is very small, but sample size n 
is large enough to maintain n*p appreciable, one gets the Poisson 
distribution as the limiting form of the binomial distribution 

n ! 1, p ! 0, with finite np = µ

Ubiquitous in “counting experiments”: rare process searches, characterisation of 
counting detectors and so on

✓
n

j

◆
pj(1� p)n�j =

n!

(n� j)!j!

µj

nj

⇣
1� µ

n

⌘n�j

=

p
2⇡e�nnn+ 1

2

p
2⇡(n� j)n�j+ 1

2 e�n+jnj

µj

j!
e�µ

=
1

(1� j/n)nej
µj

j!
e�µ =

µj

j!
e�µ = f(j;µ)

Simeon D. Poisson (1781-1840)



Poisson
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For μ<1, the most probable value is 
always zero.


For μ>=1 a peak develops, but it is 
always below μ (which is the mean, 
not the mode).


For μ integer, j= μ and j= μ-1 are 
always equally probable.

Shape and location of the Poisson vary 
for variations of its single parameter

hji = V (j) = µ

Expectation value equals variance 
“gets broader as it moves right”



Limiting relationships btw standard distributions
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f(j;µ) =
µj

j!
e�µf(j;n, p) =

✓
n

j

◆
pj(1� p)n�j

Binomial

Gaussian

Poisson

n ! 1, p ! 0, np = µ

p
µ ! �np ! µ,

p
np(1� p) ! �

f(x;µ,�) =
1

�
p
2⇡

e
(x�µ)2

2�2



Normal distribution (or Gaussian, for physicists)
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hxi = µ

V (x) = �2

Expectation value

Variance

Two parameters



Normal distribution (or Gaussian, for physicists)
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The most important distribution because of its remarkable 
theoretical properties and regularities and its ubiquitous 
applications in natural sciences


The Gaussian distribution frequently approximates well 
the distributions of many variables commonly 
encountered in natural sciences, including physics. 


Not accidental. It results from the central limit theorem: 
the mean of n independent variables that have arbitrary 
distributions (each with finite variance) tends to be 
distributed as a Gaussian centered on the average of the 
individual means.


 

Abraham De Moivre (1667-1754)

Carl F. Gauss (1777-1855)

f(x;µ,�) =
1

�
p
2⇡

e
(x�µ)2

2�2



Central Limit
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• Take the N outcomes xi of N independent random events


• Each  xi  is drawn from its (arbitrary) distribution with mean    
< xi > and variance σ2i (variance should be finite) 


Then, the distribution of the sum S of the xi individual variables 
is such that 


1. The expectation value of S is Σ xi


2. The variance of S is Σσ2i 


3. The distribution of S tends to a Gaussian when N → infinity  

Abraham De Moivre (1667-1754)

Pierre-Simon Laplace (1749-1827)

Aleksandr M. Lyapunov  (1857-1918)



Heuristic demonstration

64https://www.youtube.com/watch?v=1DTRzPRfu6s

In measurements typically, many different, and independent sources of random 
processes contribute to the dispersion of the result of a measured parameter. The 
central limit theorem ensures that the incoherent superposition of these effects 
results in a distribution of observations that approximates a Gaussian.

https://www.youtube.com/watch?v=1DTRzPRfu6s


Multidimensional gaussian
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f(~x; ~µ, V ) =
1

(2⇡)n/2
p

|V |
exp


�1

2
(~x� ~µ)TV �1(~x� ~µ))

�

f(~x; ~µ, V ) =
1

2⇡�1�2

p
1� ⇢2

exp
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2(1� ⇢2)
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x1 � µ1

�1

◆2

+
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x2 � µ2

�2

◆2

� 2⇢

✓
x1 � µ1

�1

◆✓
x2 � µ2

�2

◆#)

where  x⃗ and μ⃗ are column vectors and x⃗T  and μ⃗T  are row vectors

E[xi] = µi

Cov[xi, xj ] = Vij

For n=2 (twodimensional Gaussian) this is: 



Uniform distribution
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f(x;xmin, xmax) =
1

xmax � xmin

E[x] =
1

2
(xmin + xmax)

xmin xmax

   

Example:  for H —> γγ, the energy of the photon is uniform in the range [EH(1-β)/2, 
EH(1+β)/2 ]

V [x] =
1

12
(xmax � xmin)

2

if x is between xmin and xmax. 


f=0 otherwise.



Exponential distribution

67

   

Decay of unstable states

if x is nonnegative.


f=0 otherwise.

f(x; ⌧) =
1

⌧
e�x/⌧

E[x] = ⌧

V [x] = ⌧2



Chi-square distribution
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The χ² is the distribution of the sum of the squares of n independent Gaussian 
discrepancies normalised by the variance.

if z is nonnegative. It is function of just one 
parameter, n, which is called the number of 
degrees of freedom 

f(z;n) =
1

2n/2 �(n/2)
z

n
2 �1e�z/2

E[z] = n

V [z] = 2n

z =
nX

i=1

(xi � µi)2

�2
i



Variances of functions of random variables                    
(a.k.a. “propagation of errors…”)
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Often one is interested in knowing the variance of a function of a random 
variable, given the variance of the random variable.


Linear example: y(x) = a x +b with σx standard deviation of x. 

xx0 x0+σxx0-σx

y(x0)
y - σy = y(x0-σx)

y + σy = y(x0+σx) } σy =|a| σx

Standard deviation of y(x) is 


     σy = |dy/dx| σx



Variances of functions of random variables (cont’d)
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xx0 x0+σxx0-σx

y(x0)
y - σy = y(x0-σx)

y + σy = y(x0+σx) } σy =|dy/dx| σx

Taylor-linearize any non-linear y(x) that does not vary too much between x0-σx 
and x0+σx

σx

y(x)

y(x0)+x|dy/dx|x0 

y(x) ⇡ y(x0) +

����
dy

dx

����x



Variances of functions of random variables (1D)
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y(x) ⇡ y(x0) +

����
dy

dx

����x

V (y) = hy2(x)i � hy(x)i2

⇡ h(y(x0) + x
dy

dx
)2 � hy(x0) + x

dy

dx
i2

=

✓
dy

dx

◆2 �
hx2i � hxi2

�

=

✓
dy

dx

◆2

V (x)

Definition of variance

Replace with linearization

Do the algebra



Variances of functions of random variables 
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y(x1, x2) ⇡ y(x1,0, x2,0) +

����
@y

@x1

����
x1,0

x1 +

����
@y

@x2

����
x2,0

x2

V (y) = hy2i � hyi2

⇡
����
@y

@x1

����
2

x1,0

V (x1) +

����
@y

@x2

����
2

x2,0

V (x2) + 2

����
@y

@x1

����

����
@y

@x2

����Cov(x1, x2)

Extend to functions of 2 to n variables.

1. linearized formulas are exact only if y(x⃗) is linear. They fail if the function is 
nonlinear over a range comparable in size to σxi


2. linearized formulas apply for any pdf of the xi variables.



Set-theoretical axioms of probability
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Define the set Ω of all the possible mutually exclusive 
outcomes of a statistical experiment (sample space).                      
An event A is a set containing one or more elementary 
outcomes. 


Assume that probability P is an additive function on the 
set and it is measurable on a continuous scale so that it 
can be represented by a real number. Then


1. P(A) is nonnegative for each possible outcome A.


2. The sum of probabilities over all the possible 
outcomes (sample space Ω) is unity, P(Ω) = 1.


3. The probability for observing outcome A or outcome B 
is P(A)+P(B) if A and B are disjoint sets 

Andrey N. Kolmogorov (1903-1987)



Inference — elementary example

• Three identical bags with two balls each. Each ball can be black or white


• Pick a random bag (m, unobservable) and a random ball inside it (x, observable)


• Ball is white (x=w). What can one say about the chosen bag?


Want to know p(m|w), the probability I picked each bag, given that the ball is 
white.


74



Inference — elementary example
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p(m) 1/3 1/3 1/3

1 1/2 0
1/3 1/6 0
2/3 1/3 0

p(w|m)
p(w,m) = p(w|m) p(m)
p(m|w) = p(w|m) p(m)/p(w)

Most probably (66%) I picked the bag with two white balls. Pretty obvious. Less 
intuitive if the proportions between bags are uneven.



Classic properties of estimators 
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• Consistency (in probability). Desirable that the estimator e(x) of m converges 
in probability to m


• Precision. Desirable that the variance of the estimator is minimal 


• Bias. Desirable that the estimator is unbiased (b(m)=0)


• Distribution. Desirable that the distribution p(e(x); m) of the estimator is simple 
(possibly Gaussian)

8� lim
N!1

p(|m� e(x)| > �) = 0

b(m) = h e(x)�m i

V (e(x)) = h|e(x)� he(x)i|2i



Comments — bias
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Many estimators suffer from biases, which, in general depend on the parameter m 
being estimated. For an estimator e(x) of m, the bias b(m) is defined from


Typically biases are small wrt the variance. Issues, however, arise in combinations 
of biased estimates: the variance reduces but the bias remains and weights more. 


• If the distribution p(x|m) is known, the bias can be calculated explicitly. 


• If the bias is independent of m (b(m) = b) then use another estimator u(x) = e(x) - 
b, which is unbiased and has same precision (variance) of e(x).


• If the bias depend on m, need an unbiased estimator of b (B(x)) to redefine u(x) = 
e(x) - B(x). The new estimator has greater variance than e(x), but loss in precision 
is often smaller than bias.

E[e(x)] = h e(x) i = m+ b(m)



Example — bias correction w/ known distribution
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I have N points xi distributed as a Gaussian and use the following ML 
estimator to estimate its variance

�̂2 =
1

N

NX

xi=1

(xi � x)2

This estimator has a bias                               


and a variance

b = ��2/N

Var(�̂2) = 2�4N � 1

N2

So, I can rework an alternative estimator 


which has zero bias and a variance                                     which is only 1/N2 larger 
than that of the previous estimator

s2 =
1

N � 1

NX

xi=1

(xi � x)2

Var(s2) = 2�4 1

N � 1



Example — biases w/ unknown distributions
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In most practical cases, p(x|m) is not well known, or 
the bias is hard to calculate explicitly.


Biases are studied by repeating the measurement on 
simulated samples and comparing results with input 
“true” values or applying the estimator in control 
samples for which results are known. 


If deviations ≥ O(variance) occur , correcting the 
results of the measurement by subtracting the bias 
is dangerous. Need confidence that simulated 
experiments reproduce all features of the data (but 
then also the source of the bias could probably be 
with identified and removed)

2007 measurement of 
lepton+jets top-quark mass 

by CDF

Estimated mass vs true mass

Bias vs true mass


