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Introduction
Traditional Methodology: 
Trial & error, Continual 
synthesis and 
characterization

Computational material 
simulation methods : DFT, 
Monte Carlo simulation, 
and MD Data driven - Machine 

Learning (ML) methods 

• Why Machine Learning ?

• Perovskites Materials : Simplicitly of structure,

flexibility of composition, suitable band structure[1]

• Bandgap determines material’s electronic and optical properties

and plays a crucial role to decide its use in Photocatalysis[2],

photovoltaics[3].

• Here, we predicted Bandgap of cubic perovskites(ABX3) by 5

different Graph Neural Network based ML models only from crystal

structure.

• We found CGCNN model optimally predicts the bandgap with the

average RMSE of ~ 0.39 eV and R2-value > 0.90, which is comparable

to first principle study(Theoretical) calculations.

• Crystal structure➔ Bandgap➔ Application in various fields

Figure: cubic perovskites ABX3 structure (space group Pmത3m)
(Source: https://alchetron.com/Perovskite-%28structure%29) 



1. Data 
collection and 

Screening 

2.  Feature 
Engineering

3. Training ML 
models and 
prediction

4. Model 
evaluation 5. Application 6. Screening

Methodology

2. Feature engineering : 

• Descriptors : Crystal structure as input feature and
Bandgap as output feature

• 80% Training set - 20% Testing set

1. Data collection :

Training Data : 18,000 Castelli perovskites data [4,5] 

                                               Screening

735 perovskites with non-zero direct bandgap

                                 Screening

         Data of crystal structure and bandgap

Target property = f (Materials) = f (ACS)
      Bandgap  = f (Crystal Structure)

                        ML Regression 

(ML workflow)



4. Model evaluation :

• Generalization : 20 – Fold Cross
Validation (CV)

• Hyperparameter optimization by 
grid search 

• Accuracy and stability are assessed 
by the Evaluation Metrics:

1. Plots between predicted vs 
actual Bandgap values 

2. Correlation Co-efficient (R2)

3. Root Mean Squared Error (RMSE)

Methodology

Table 1. List of the five ML Models used and optimized Hyperparameters

No.
Model Hyperparameters

1 CGCNN "dim1": 100, "dim2": 150, "conv_count": 4, "fc_count": 1, "pool": 

"global_mean_pool", "lr": 0.002, "batch_size": 100, "epochs": 250

2 SchNet "dim1": 100, "dim2": 100, "dim3": 150, "conv_count": 4, "fc_count": 1, 

"pool": "global_mean_pool", "lr": 0.0005, "batch_size": 100, "epochs": 250

3 MPNN "dim1": 100, "dim2": 100, "dim3": 100, "conv_count": 4, "fc_count": 1, 

"pool": "global_mean_pool", "lr": 0.001, "batch_size": 100, "epochs": 250

4 MEGNet "dim1": 100, "dim2": 100, "dim3": 100, "conv_count": 4, "fc_count": 1, 

"pool": "global_mean_pool", "lr": 0.0005, "batch_size": 100, "epochs": 250

5 GCN "dim1": 100, "dim2": 150, "conv_count": 4, "fc_count": 1, "pool": 

"global_mean_pool", "lr": 0.002, "batch_size": 100, "epochs": 250

3. Training: by MatDeepLearn package [6, 7] 

Figure: Working of Graph Neural Network (Source: https://arxiv.org/pdf/1811.05660)



Results

Figure: Predicted vs Actual Bandgap (Eg) by different ML models

Ideal : X =Y line



Results

Optimal Configuration: CGCNN 
model having minimum train/test 

RMSE of 0.08 / 0.69 eV and 
highest R2 (0.99/0.91)

Ideal Values :  RMSE : (minimum ~ 0)                        R2-score : (~ 1) 

Figure: RMSE and R2-Score for different ML models

Conclusion: 
The correlation between crystal structure and bandgap has been established by the ML algorithm and provided an 
alternate and fast way to DFT calculations to directly predict the bandgap of perovskite materials using only the
crystal structure as a feature with good precision (RMSE of 0.08 / 0.69 eV and R2 (0.99/0.91)). By predicting 
Bandgap using the explored CGCNN  model, we can screen large libraries of perovskite materials for potential use 
in Photocatalysis, photovoltaics or luminescence within a negligible time.



1. Q. Tao et al. In: npj Computational Materials. 7 (1 2021), p. 23.

2. T. Bligaard et al. In: Chemical bonding at surfaces and interfaces, Elsevier. (2008) p. 255

3. R. Olivares-Amaya et al. In: Energy Environ. Sci. 4 (12 2011), p. 4849.

4. I. E. Castelli et al. In: Energy & Environmental Science, 5 (10 2012), p. 9034.

5. I. E. Castelli et al. In: Castelli Perovskites Data. figshare. Dataset, https://doi.org/10.6084/m9.figshare.7215323.v1  
(2012)

6. V. Fung et al. In: npj Computational Materials, 7 (1 2021), p. 84

7. T. Xie et al. In: Physical Review Letters. 120 (14 2018), p. 145301. 

ZDP acknowledges the ASEAN-SERB Project (CRG/2019/001292), Government of India, for the opportunity and 
financial assistance. 

References

Acknowledgements

https://doi.org/10.6084/m9.figshare.7215323.v1


Thank You


	Slide 1: Machine Learning accelerated Prediction of Bandgap of Cubic Perovskites  
	Slide 2: Introduction
	Slide 3: Methodology
	Slide 4: Methodology
	Slide 5: Results
	Slide 6: Results
	Slide 7: References
	Slide 8: Thank You

