

Prospects for measuring the CKM angle γ with the decays $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$and $B^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}$

Alex Birnkraut
on behalf of the LHCb collaboration

Motivation

- $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$provides theoretically clean measurement of CKM angle γ
- measure CP violation in interference of mixing and decay
advantages:

- B^{0} system: low oscillation frequency ($\Delta m \approx 0.51 \mathrm{ps}^{-1}$)
- high statistics channel (expect $\approx 500,000$ signal candidates)

- disadvantage:
- decay amplitudes different $\left(O\left(\lambda^{2}\right)\right.$ vs $\left.O\left(\lambda^{4}\right)\right)$
\rightarrow interference at the percent level

Decay rates

- time-dependent analysis of four decay amplitudes: $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$and $\bar{B}^{0} \rightarrow D^{\mp} \pi^{ \pm}$

$$
\begin{aligned}
& \Gamma\left(B^{0} \rightarrow D^{-} \pi^{+}\right)(t) \propto e^{-\frac{t}{\tau}}\left(1+D_{f} \sinh \left(\frac{\Delta \Gamma t}{2}\right) \pm C_{f} \cos (\Delta m t) \mp S_{f} \sin (\Delta m t)\right) \\
& \Gamma\left(B^{0} \rightarrow D^{+} \pi^{-}\right)(t) \propto e^{-\frac{t}{\tau}}\left(1+D_{\bar{f}} \sinh \left(\frac{\Delta \Gamma t}{2}\right) \mp C_{\bar{f}} \cos (\Delta m t) \pm S_{\bar{f}} \sin (\Delta m t)\right)
\end{aligned}
$$

with $C_{f}=C_{\bar{f}}=\frac{1-r^{2}}{1+r^{2}}, S_{f}=\frac{-2 r \sin (2 \beta+\gamma-\delta)}{1+r^{2}}, S_{\bar{f}}=\frac{2 r \sin (2 \beta+\gamma+\delta)}{1+r^{2}}$
and $r=\frac{\left|\mathcal{A}\left(\bar{B}^{0} \rightarrow D^{-} \pi^{+}\right)\right|^{2}}{\left|\mathcal{A}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)\right|^{2}}=\frac{\left|\mathcal{A}\left(B^{0} \rightarrow D^{+} \pi^{-}\right)\right|^{2}}{\left|\mathcal{A}\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right)\right|^{2}}$

- for B^{0} system: term of \sinh vanishes because of $\Delta \Gamma \approx 0$
- sensitivity to C / S observables only from events with tagged production flavour
- small value of $r \rightarrow$ no sensitivity on C
- for γ determination: external input of r and β necessary
- two possible γ solutions due to ambiguity of sine function

LHCb

pseudorapidity range: $2<\eta<5$

- different track types:
long track: decay products traversing all tracking detectors
downstream: decay products not traversing VELO

Selection of $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$decays

- loose preselection
- main offline selection of all ($B, P \mathrm{PV}$) pairs:
- vetoing physical backgrounds
- reduction of combinatorial background with a BDT
- random candidate selection
- FoM: statistical uncertainty on CP violation parameters
- apply selection
- perform massfit to extract yields
- generate toy samples
- perform decay time fit to extract uncertainties
- overall signal efficiency: $70.1 \pm 0.1 \%$
- combinatoric background rejection: 99.911 $\pm 0.002 \%$

Massfit

- split dataset into two disjoint subsets according to PID information
- genuine $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$decays with small cross-feed from $B^{0} \rightarrow D^{\mp} K^{ \pm}$
- genuine $B^{0} \rightarrow D^{\mp} K^{ \pm}$with a fraction of cross-feed $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$
- pion and kaon samples are fitted simultaneously
- fit range from $5090 \mathrm{MeV} / \mathrm{c}^{2}$ to $6000 \mathrm{MeV} / \mathrm{c}^{2}$
- yields of all components floating in the fit
- cross-feed decays in both samples are constrained to that of the corresponding signal sample
- yields in range from $5220 \mathrm{MeV} / \mathrm{c}^{2}$ to $5600 \mathrm{MeV} / \mathrm{c}^{2}$:
- signal yield: 540,500 ± 800
- background yield: 39,190 ± 330

Flavour tagging

, using both SS taggers:

- train both taggers on $B^{0} \rightarrow J / \psi K^{* 0}$
- expected performance:
- tagging efficiency: $\varepsilon_{\text {tag }}=(79.40 \pm 0.23) \%$
- tagging power: $\varepsilon_{\text {eff }}=(2.11 \pm 0.11) \%$

LHCb-Paper-2016-039

- using full set of available OS taggers:
- single track taggers: OS μ, OSe, OSk
- OS vertex charge
- OS charm
- expected performance:

- tagging efficiency: $\varepsilon_{\text {tag }}=(27.3 \pm 0.2) \%+(4.11 \pm 0.03) \%$
- tagging power: $\varepsilon_{\text {eff }}=(2.1 \pm 0.1) \%+(0.40 \pm 0.02) \%$

[^0]
Prospects

- time-independent analysis steps done
- decay time fit
- acceptance floated
- decay time constrained to HFAG WA (1.52 ps) arxiv:1412.7515v1
- toy studies using
- $\approx 80 \%$ tagging efficiency for SS
- $\approx 35 \%$ tagging efficiency for OS
- mass/time shapes from data
- statistical sensitivity: $\sigma\left(S_{f}\right)=\sigma\left(S_{\bar{f}}\right) \approx 0.012$
- current uncertainties:

	Belle	BaBar	WA
S_{f}	0.030 (stat) ± 0.012 (syst)	0.048 (stat) ± 0.014 (syst)	0.027
$S_{\bar{f}}$	0.029 (stat) ± 0.012 (syst)	0.048 (stat) ± 0.014 (syst)	0.027

Prospects with $B^{0} \rightarrow D^{* \mp} \pi^{ \pm}$and $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$in Run II

- already recorded $\sim 2 \mathrm{fb}^{-1}$ in Run II
- higher $b \bar{b}$ cross section due to higher centre-of-mass energy
- still two years of data taking ahead
- expected number of $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$candidates for Run II: 1,300,000 ($5 \mathrm{fb}^{-1}, 13 \mathrm{TeV}$)
- statistical sensitivities
- Run II standalone: $\sigma\left(S_{f}\right)=\sigma\left(S_{\bar{f}}\right) \approx 0.007$
- Run I + Run II: $\sigma\left(S_{f}\right)=\sigma\left(S_{\bar{f}}\right) \approx 0.006$
- adding decays into excited $D^{* \pm}$ mesons
- including decay modes $D^{0} \rightarrow K^{+} \pi^{-}$and $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$
- expect $0\left(0.5 \times N_{B^{0} \rightarrow D^{\mp}} \pi^{ \pm}\right)$for $B^{0} \rightarrow D^{* \mp} \pi^{ \pm} \quad$ PRD 87,071101(R) (2013)
- Run I + Run II: $\sigma\left(S_{f}\right)=\sigma\left(S_{\bar{f}}\right) \approx 0.005$
- sensitivity on γ depends heavily on values for r and δ

Prospects with $B^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}$ and $B_{s}^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}$

- $B^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}$ has similar decay mechanism as $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$
- sensitivity on $2 \beta+\gamma$
- interfering amplitudes have similar size $\left(O\left(\lambda^{3}\right)\right)$
- $B_{s}^{0} \rightarrow \bar{D}^{0} K_{s}^{0}$ shares same Feynman diagrams as $B_{s}^{0} \rightarrow J / \psi \phi$
- possible decay channel to measure ϕ_{s}
- branching fractions expected at $\mathrm{O}\left(5 \times 10^{-4}\right)$

- first: measurement of $B_{s}^{0} \rightarrow \bar{D}^{0} K_{s}^{0}$ branching fractions normalised to $B^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}$
- \bar{D}^{0} candidates formed from combinations of a kaon and pion candidate
- K_{s}^{0} candidates built out of two pions
- using long track and downstream kaons

Yield determination

four fit components:
correctly reconstructed D and K candidates correctly reconstructed D candidates with two random pions correctly reconstructed K candidates with random pion and kaon random combination of all four daughter particles

Yield determination

- mass shape categories :
- signal for B^{0} and B_{s}^{0}
- peaking structures at lower masses: photon or pion not reconstructed
- combinatorial background
- shared parameters between PDF's for long and downstream samples
- gaussian constraints to branching fractions increase fit stability:

$-\mathcal{B}\left(B_{s}^{0} \rightarrow \bar{D}^{0} K^{* 0}\right) /\left[\mathcal{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{* 0}\right)+\mathcal{B}\left(B_{s}^{0} \rightarrow \bar{D}^{0} K^{* 0}\right)\right]$
$-\mathcal{B}\left(B_{(s)}^{0} \rightarrow \bar{D}^{* 0}\left(\bar{D}^{0} \pi^{0}\right) K^{0}\right) /\left[\mathcal{B}\left(B_{(s)}^{0} \rightarrow \bar{D}^{* 0}\left(\bar{D}^{0} \gamma\right) K^{0}\right)+\mathcal{B}\left(B_{(s)}^{0} \rightarrow \bar{D}^{* 0}\left(\bar{D}^{0} \pi^{0}\right) K^{0}\right)\right]$
- determined signal yields: $N\left(B^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}\right)=219 \pm 21$

$$
N\left(B_{s}^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}\right)=471 \pm 26
$$

$$
N\left(B_{s}^{0} \rightarrow \bar{D}^{* 0} K_{\mathrm{s}}^{0}\right)=258 \pm 83
$$

Branching fraction determination

- using ratio to determine branching fraction

$$
\mathcal{B}\left(B_{s}^{0} \rightarrow \bar{D}^{(*) 0} \bar{K}^{0}\right)=\mathcal{R}^{(*)} \times\left[\mathcal{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{0}\right)+\mathcal{B}\left(\bar{B}^{0} \rightarrow \bar{D}^{0} \bar{K}^{0}\right)\right]
$$

with $\mathcal{R}^{(*)}=\frac{f_{d}}{f_{s}} \frac{N\left(B_{s}^{0} \rightarrow \bar{D}^{(*) 0} K_{\mathrm{s}}^{0}\right)}{N\left(B^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}\right)+N\left(\bar{B}^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}\right)} \frac{\epsilon_{B^{0}}}{\epsilon_{B_{s}^{0}}}$

obtained from simulated samples

previous LHCb measurement

JHEP 04 (2013) 001
LHCb-CONF-2013-011

Results

- resulting signal yields with systematic uncertainties:

$$
\begin{aligned}
& -N\left(B^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}\right)=219 \pm 21 \text { (stat) } \pm 11 \text { (syst) } \\
& -N\left(B_{s}^{0} \rightarrow \bar{D}^{0} K_{s}^{0}\right)=471 \pm 26 \text { (stat) } \pm 25 \text { (syst) } \\
& -N\left(B_{s}^{0} \rightarrow \bar{D}^{* 0} K_{s}^{0}\right)=258 \pm 83 \text { (stat) } \pm 30 \text { (syst) }
\end{aligned}
$$

$$
\text { first observation of } B_{s}^{0} \rightarrow \bar{D}^{0} K_{s}^{0}
$$

- ratios of branching fractions: $\mathcal{R}^{(*)}=\frac{f_{d}}{f_{s}} \frac{N\left(B_{s}^{0} \rightarrow \bar{D}^{(*) 0} K_{\mathrm{s}}^{0}\right)}{N\left(B^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}\right)+N\left(\bar{B}^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}\right)} \frac{\epsilon_{B^{0}}}{\epsilon_{B_{s}^{0}}}$

$$
\begin{aligned}
\mathcal{R} & =8.3 \pm 0.9(\text { stat }) \pm 0.5(\text { syst }) \pm 0.5(\text { frag }) \\
\mathcal{R}^{*} & =5.4 \pm 2.0(\text { stat }) \pm 0.7(\text { syst }) \pm 0.3(\text { frag })
\end{aligned}
$$

- branching fractions:

$$
\begin{aligned}
\mathcal{B}\left(B_{s}^{0} \rightarrow \bar{D}^{0} \bar{K}^{0}\right) & =(4.3 \pm 0.5(\text { stat }) \pm 0.3(\text { syst }) \pm 0.3(\text { frag }) \pm 0.6(\text { norm })) \times 10^{-4} \\
\mathcal{B}\left(B_{s}^{0} \rightarrow \bar{D}^{* 0} \bar{K}^{0}\right) & =(2.8 \pm 1.0(\text { stat }) \pm 0.3(\text { syst }) \pm 0.2(\text { frag }) \pm 0.4(\text { norm })) \times 10^{-4}
\end{aligned}
$$

Prospects for $B^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}$

- Run I + Run II expectations: $0(1,000) B^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}$ candidates
- reminder:

$$
r_{D \pi} \approx\left|\frac{V_{u b} V_{c d}^{*}}{V_{c b}^{*} V_{u d}}\right| \approx 0.02
$$

- for $B^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}$:

$$
r_{\bar{D} 0 K_{s}^{0}} \approx\left|\frac{V_{u b} V_{c s}^{*}}{V_{c b}^{*} V_{u s}}\right| \approx 0.4
$$

- number of B 's needed to make measurement: $N_{B} \propto \frac{1}{\mathcal{B}\left(B^{0} \rightarrow f\right) r_{f}^{2}}$
- about 4 times less B^{\prime} s needed with $B^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}$
- expected sensitivity with $B^{0} \rightarrow \bar{D}^{0} K_{s}^{0}: \sigma\left(S_{f}\right)=\sigma\left(S_{\bar{f}}\right) \approx 0.1$
- but: uncertainty from \bar{D}^{0} tag (DCS decay of $\bar{D}^{0} \rightarrow K^{-} \pi^{+}$)
- alternative: using self tagged excited D^{0} state

Conclusion

- huge progress in time dependent measurement of $C P$ violation in $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$
- time-independent parts of analysis completed
- expected statistical sensitivity: $\sigma\left(S_{f}\right)=\sigma\left(S_{\bar{f}}\right) \approx 0.012$
- prospects with $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$and $B^{0} \rightarrow D^{* \mp} \pi^{ \pm}$:
- uncertainty on S_{f} and $S_{\bar{f}}$ can be reduced to 0.005 with the combined Run I and Run II data
- $B^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}$ gives sensitivity to same CKM matrix elements as $B^{0} \rightarrow D^{\mp} \pi^{ \pm}$
- advantage: interfering amplitudes are similar
- disadvantage: much lower statistics + DCS $\bar{D}^{0} \rightarrow K^{-} \pi^{+}$decays

Backup

Systematic uncertainties for $B_{s}^{0} \rightarrow \bar{D}^{0} K_{s}^{0}$

- tested following sources of systematic uncertainties:
- fit model (only systematic on number of signal candidates)
- efficiency determination from simulated samples
- impact of selection \rightarrow no systematic applied
- effect due to random removal of random candidates
\rightarrow no systematic applied
- repeated measurement for different magnet polarities/long\& downstream samples \rightarrow no systematic applied

Source	$B_{s}^{0} \rightarrow \bar{D}^{0} K_{\mathrm{s}}^{0}$	$B_{s}^{0} \rightarrow \bar{D}^{* 0} K_{\mathrm{s}}^{0}$
Fit model	5.4%	11.9%
$\epsilon_{B^{0}} / \epsilon_{B_{s}^{0}}$	2.4%	2.5%
f_{s} / f_{d}	5.8%	
$\mathcal{B}_{\text {sum }}$	13.5%	

[^0]: LHCb-Paper-2011-027 \& LHCb-Paper-2015-027

