Combining γ at LHCb

Conor Fitzpatrick On behalf of the LHCb collaboration

9th International Workshop on the CKM Unitary Triangle TIFR, Mumbai

 γ at LHCb

Introduction LHCb Measuring γ DK combination Dh combination Summary Outlook Backup Slides

C. Fitzpatrick

The UT is well constrained...

- Global fits to the CKM UT: UTFit, CKMFitter (shown)
- Using all available measurements, Angles are determined to sub-2 deg precision

γ at LHCb Introduction LHCb Measuring γ DK combination Dh combination Summary Outlook Backup Slides

C. Fitzpatrick

... but the SM is not well constrained

• The only tree-level constraints in the Unitary triangle are from V_{ub} and γ

 γ at LHCb

 Introduction

 LHCb

 Measuring γ

 DK combination

 Dh combination

 Summary

 Outlook

 Backup Slides

C. Fitzpatrick

Measuring γ is important...

- γ is unique among the CKM angles
- \blacktriangleright Can be measured in the interference between $b \rightarrow c$ and $b \rightarrow u$ transitions, eg:

• Comparing global fit to γ and tree-level measurements:

 $\gamma = (67^{+1}_{-3})^{\circ}$ (constrained) $\gamma = (73^{+6}_{-7})^{\circ}$ (trees)

Measuring \(\gamma\) in tree-level decays is crucial: Discrepancies between indirect and direct measurements could signal new physics in loops

 γ at LHCb

 Introduction

 LHCb

 Measuring γ

 DK combination

 Dh combination

 Summary

 Outlook

 Backup Slides

C. Fitzpatrick

. . . but measuring γ is hard

- Nothing worth doing is easy:
 - $\blacktriangleright\,$ Signal yields are small: BR for B^- $\rightarrow\,$ DK^-,D $\rightarrow\,$ K $\pi\,\approx\,10^{-7}$
 - \blacktriangleright Interference between favored and suppressed decay modes at the 10% level for DK, 0.5% for D π
 - Hadronic final states are hard to separate from backgrounds in a hadron collider environment
- No single measurement is sensitive yet: Need to make many measurements and combine!
- Even so, LHCb is *the* experiment to measure γ with...

 γ at LHCb

Introduction LHCb Measuring γ DK combination Dh combination Summary Outlook Backup Slides

C. Fitzpatrick

LHCb

Int. J. Mod. Phys. A30, 1530022 (2015)

Beauty (and charm, and strange) physics at a hadron collider:

- ► Forward spectrometer at the LHC: correlated bb on 2 < η < 5</p>
- ▶ 10^5 bb pairs produced per second
- \blacktriangleright Decay time resolution \sim 45 55fs
- Precise π/K identification
- Flexible software trigger

C. Fitzpatrick

 γ at LHCb

The LHCb dataset

- World's largest beauty and charm dataset:
- Run 1 (2011 + 2012) Dataset corresponds to $\sim 3 \times 10^{11}$ bb pairs!

• This talk: $\sqrt{s} = 7,8$ TeV pp collisions recorded in 2011+2012, ~ 3 fb⁻¹

 Run 2: Increased cross-sections + higher trigger efficiencies. Already as many bb pairs as Run 1.

 γ at LHCb Introduction LHCb Measuring γ DK combination Dh combination Summary Outlook Backup Slides

C. Fitzpatrick

Measuring γ

- ► Four general categories of γ -sensitive measurements:
- "GLW", D decays to CP eigenstate, D \rightarrow KK, D $\rightarrow \pi\pi$:

$$A_{C\mathcal{P}+} = \frac{2r_B \sin \delta_B \sin \gamma}{R_{C\mathcal{P}+}}$$
$$R_{C\mathcal{P}+} = 1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma$$

 \blacktriangleright "ADS", quasi-flavor-specific final states, eg: $D \rightarrow K\pi$, $D \rightarrow K3\pi$

• additional amplitude r_D and phase δ_D enter from D decay:

$$A_{ADS}^{K} = \frac{2r_{B}r_{D}\sin(\delta_{B} + \delta_{D})\sin\gamma}{R_{ADS}}$$
$$R_{ADS}^{K} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos\beta$$

- Model independent: binned dalitz plot using CLEO phase variation as input
- Model dependent: fits to distribution of events in the $D \rightarrow K_{S}^{0}hh$ Dalitz plot:

$$x_+ = r_B \cos(\delta_B + \gamma)$$
 $y_+ = r_B \sin(\delta_B + \gamma)$

▶ Time-dependent: $B_s^0 \rightarrow D_s K$ and $B^0 \rightarrow D\pi$ measure $\gamma - \phi_s$, $2\beta + \gamma$

While each analysis measures different observables, each contributes *complementary* information

 γ at LHCb Introduction LHCb DK combination Dh combination Summary Outlook Backup Slides

C. Fitzpatrick

Combining γ at LHCb: DK only

- Last combination in 2014
- Many new/updated results
- ▶ See Agnieszka's talk today for Brand-new $B_s^0 \rightarrow D_s K$
- $B^+ \rightarrow DK^+, D \rightarrow h^+h^-$, GLW/ADS, $3 \, {\rm fb}^{-1}$
- $B^+ \to DK^+$, $D \to h^+\pi^-\pi^+\pi^-$, quasi-GLW/ADS, $3\,{\rm fb}^{-1}$
- $B^+ \to DK^+, \, D \to h^+ h^- \pi^0$, quasi-GLW/ADS, $3 \, {\rm fb}^{-1}$
- $B^+ \to DK^+, D \to K^0_{\rm s} h^+ h^-$, model-independent GGSZ, 3 fb⁻¹
- $B^+ \rightarrow DK^+$, $D \rightarrow K^0_{\rm s}K^+\pi^-$, GLS, $3\,{\rm fb}^{-1}$
- $B^0 \rightarrow DK^+\pi^-, D \rightarrow h^+h^-$, GLW-Dalitz, 3 fb⁻¹
- $B^0 \rightarrow DK^{*0}, D \rightarrow K^+\pi^-$, ADS, $3 \,\mathrm{fb}^{-1}$
- $B^0 \to DK^{*0}, D \to K_s^0 \pi^+ \pi^-$, model-dependent GGSZ, 3 fb⁻
- $B^+ \rightarrow DK^+\pi^+\pi^-, \ D \rightarrow h^+h^-, \ {\rm GLW}/{\rm ADS}, \ 3\,{\rm fb}^{-1}$
- $B_s^0 \to D_s^{\mp} K^{\pm}$, time-dependent, 1 fb⁻¹

Previous result: $\gamma = (72.9^{+9.2}_{-9.9})^{\circ}$ LHCb-CONF-2014-004

 γ at LHCb

Introduction

Dh combination

Backup Slides

Summary

Outlook

LHCb Measuring γ DK combination

C. Fitzpatrick

The 2016 DK combination new!

- New DK combination: Supercedes 2014 result
 - Frequentist and Bayesian interpretations
 - Both show good agreement
 - Coverage is good

 $\frac{1611.03076}{\gamma = (72.2^{+6.8}_{-7.3})^{\circ}}$

 γ at LHCb Introduction LHCb Measuring γ DK combination Dh combination Summary Outlook Backup Slides

Observable	Central value	68.3% Interval	95.5% Interval	99.7% Interval
γ (°)	72.2	[64.9, 79.0]	[55.9, 85.2]	[43.7, 90.9]
r_B^{DK}	0.1019	$\left[0.0963, 0.1075 ight]$	$\left[0.0907, 0.1128 ight]$	[0.0849, 0.1182]
$\delta_B^{DK}(^{\circ})$	142.6	[136.0, 148.3]	[127.8, 153.6]	[116.2, 158.7]
$r_B^{DK^{*0}}$	0.218	[0.171, 0.263]	[0.118, 0.305]	[0.000, 0.348]
$\delta_B^{DK^{*0}}(^\circ)$	189	[169, 212]	[148, 241]	[123, 283]

C. Fitzpatrick

Complementarity of inputs: DK combination

arxiv:1611.03076

 γ at LHCb

ytechniqu de lausann 11 / 19

FÉDÉRALE DE LAU

DK Combination summary new! arxiv:1611.03076

 \triangleright ~ 2° more precise than 2014 result

-CL

 $\gamma \in [64.9, 79.0]^{\circ}$ at 68.3% CL, $\gamma \in [55.9, 85.2]^\circ$ at 95.5% CL.

- $\gamma = (72.2^{+6.8}_{-7.3})^{\circ}$
 - Several additional analyses in the pipeline on Run 1 data
 - Many updates + new analyses with the Run 2 dataset

Dh combination

- D π final states usually ignored as $r^{D\pi} << r^{DK}$
- but LHCb has collected a lot of them and don't like waste

 γ at LHCb

Introduction LHCb Measuring γ

DK combination

Dh combination Summary

Outlook Backup Slides

C. Fitzpatrick

December 1, 2016

Previous result: LHCb-CONF-2014-004

The 2016 Dh combination new! arxiv:1611.03076

- 2016 Dh combination (Frequentist)
- Two $r^{D\pi}$ solutions:
 - frequentist combination prefers higher solution
 - expectation suppressed at $\sim\!1\sigma$

 γ at LHCb

C. Fitzpatrick

Bayesian Dh combination new! arxiv:1611.03076

- 2016 Dh combination (Bayesian)
- Two $r^{D\pi}$ solutions:
 - Bayesian favors lower solution
 - solutions compatible at 2σ level

 γ at LHCb

Introduction LHCb Measuring γ DK combination Dh combination Summary Outlook Backup Slides C. Fitzpatrick

C. Fitzpatrick

Dh combination interpretation

Frequentist result:

Observable	Central value	68.3% Interval	95.5% Interval	99.7% Interval
γ (°)	73.5	[70.5, 76.8]	[56.7, 83.4]	[40.1, 90.8]
r_B^{DK}	0.1017	$\left[0.0970, 0.1064 ight]$	[0.0914, 0.1110]	[0.0844, 0.1163]
$\delta_B^{DK}(\circ)$	141.6	[136.6, 146.3]	[127.2, 151.1]	[114.6, 155.7]
$r_{B}^{DK^{*0}}$	0.220	[0.173, 0.264]	[0.121, 0.307]	[0.000, 0.355]
$\delta_B^{DK^{*0}}(\circ)$	188	[168, 211]	[148, 239]	[120, 280]
$r_B^{D\pi}$	0.027	[0.0207, 0.0318]	[0.0020, 0.0365]	[0.0008, 0.0425]
$\delta_B^{D\pi}(^\circ)$	348.3	[343.2, 352.9]	[220.5, 356.4]	[192.9, 359.8]

Bayesian result:

Observable	Central value	68.3% Interval	95.5% Interval	99.7% Interval
γ (°)	72.4	[63.9, 79.0]	[52.1, 84.6]	[40.1, 89.5]
r_B^{DK}	0.1003	$\left[0.0948, 0.1057 \right]$	$\left[0.0893, 0.1109 \right]$	$\left[0.0838, 0.1159\right]$
$\delta_B^{DK}(^\circ)$	141.0	[133.3, 147.5]	[122.1, 153.1]	[108.6, 157.5]
$r_B^{DK^{\ast 0}}$	0.2072	$\left[0.1514, 0.2555\right]$	$\left[0.0788, 0.3007 \right]$	$\left[0.0031, 0.3291 \right]$
$\delta_B^{DK^{*0}}(^\circ)$	189.8	[166.3, 216.5]	[143.9, 255.2]	[120.2, 286.0]
$r_B^{D\pi}$	0.0043	$\left[0.0027, 0.0063 ight]$	[0.0011, 0.0281]	[0.0008, 0.0329]
$\delta^{D\pi}_B(^\circ)$	303.7	[264.7, 332.7]	$\left[231.5, 355.2\right]$	$\left[202.7, 359.0 \right]$

- Both frameworks report the same χ^2 minima
- Differences of this kind not uncommon in presence of a highly non-Gaussian likelihood function

 γ at LHCb

Introduction LHCb Measuring γ DK combination Dh combination

Summary Outlook Backup Slides

C. Fitzpatrick

Summary

- LHCb γ combination has been updated
 - Several new measurements + updates to old ones
 - DK and Dh results
 - Bayesian and Frequentist combinations to choose from
- ▶ Run 1 sensitivity expected to be $\sigma(\gamma) \rightarrow 7^{\circ}$
- We have reached that sensitivity with a few results still to be included

$$\gamma = (72.2^{+6.8}_{-7.3})^{\circ}$$

 γ at LHCb

Introduction LHCb Measuring γ DK combination Dh combination Summary Outlook Backup Slides

C. Fitzpatrick

Outlook

- Current indirect precision: $\sigma(\gamma) = (^{+1.0}_{-3.7})^{\circ}$
- LHCb expects:
- Run 2: (2015-2018)
 - \blacktriangleright Increased energy \rightarrow factor 2 increase in beauty cross section and more efficient trigger
 - Expect similar sensitivity to Belle II, $\gamma \sim$ 4° with additional 5fb⁻¹
- Upgrade: (2020-2023)
 - Software trigger at full event rate: Doubling of hadronic trigger efficiency
 - \blacktriangleright Sensitivity to $\gamma~\sim 1^\circ$ with $~\sim 50 {\rm fb}^{-1}$
- Expect sensitivity to scale with integrated luminosity. Systematic and ext. input uncertainties should also decrease: See Sam's talk from this morning

Introduction LHCb

 γ at LHCb

Measuring γ

 $\mathsf{DK}\ \mathsf{combination}$

Dh combination

Summary

Outlook

Backup Slides

C. Fitzpatrick

Conclusions

- ▶ LHCb now dominates the precision on γ with $\sigma(\gamma) \rightarrow 7^{\circ}$ from Run 1
 - More from Run1 still to come:
 - \blacktriangleright New $B^0_s \! \rightarrow \! D_s K$ result from Agnieszka earlier
 - Alex's talk: $B^0_d \rightarrow D\pi$ shows potential
 - \blacktriangleright Results from Run2 starting to come through: See Frédéric's talk on $B^+ \,{\to}\, D^0 K^{*+}$
- \blacktriangleright We hope to obtain a combined precision of 1° in the upgrade era
- ▶ We look forward to competition (and combination!) from Belle II

 γ at LHCb

Introduction

DK combination

Dh combination

Summary

Outlook Backup Slides

LHCb Measuring γ

C. Fitzpatrick

Backups

 γ at LHCb

Introduction LHCb

Measuring γ

DK combination

Dh combination

Summary

Outlook

Backup Slides

C. Fitzpatrick

LHCb Inputs

B decay	D decay	Method	Ref.	Status since last combination [28]	γ at LHCb
$B^+ \to Dh^+$	$D \rightarrow h^+ h^-$	GLW/ADS	[44]	Updated to $3{\rm fb}^{-1}$	LHCb
$B^+ \to D h^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	$\mathrm{GLW}/\mathrm{ADS}$	[44]	Updated to $3{\rm fb}^{-1}$	Measuring γ
$B^+ \to Dh^+$	$D \to h^+ h^- \pi^0$	$\mathrm{GLW}/\mathrm{ADS}$	[45]	New	DK combination Dh combination
$B^+ \to DK^+$	$D \to K^0_{ m s} h^+ h^-$	GGSZ	[46]	As before	Summary
$B^+ \to DK^+$	$D \rightarrow K_{\rm s}^0 K^- \pi^+$	GLS	[47]	As before	Outlook
$B^+ \to D h^+ \pi^- \pi^+$	$D \rightarrow h^+ h^-$	$\mathrm{GLW}/\mathrm{ADS}$	[48]	New	Backup Slides
$B^0 \to DK^{*0}$	$D \to K^+ \pi^-$	ADS	[49]	As before	
$B^0\!\to DK^+\pi^-$	$D \rightarrow h^+ h^-$	$\operatorname{GLW-Dalitz}$	[50]	New	
$B^0 \to D K^{*0}$	$D \to K_{ m s}^0 \pi^+ \pi^-$	GGSZ	[51]	New	C. Fitzpatrick
$B^0_s \to D^\mp_s K^\pm$	$D_s^+\!\to h^+h^-\pi^+$	TD	[52]	As before	December 1, 2016

External Inputs

 γ at LHCb

Decay	Parameters	Source
$D^0 - \overline{D}^0$ -mixing	x_D, y_D	HFAG
$D \to K^+ \pi^-$	$r_D^{K\pi}, \delta_D^{K\pi}$	HFAG
$D \to h^+ h^-$	$A_{KK}^{\mathrm{dir}}, A_{\pi\pi}^{\mathrm{dir}}$	HFAG
$D \to K^\pm \pi^\mp \pi^+ \pi^-$	$\delta_D^{K3\pi}, \kappa_D^{K3\pi}, r_D^{K3\pi}$	CLEO+LHCb
$D \to \pi^+\pi^-\pi^+\pi^-$	$F_{\pi\pi\pi\pi}$	CLEO
$D\to K^\pm\pi^\mp\pi^0$	$\delta_D^{K2\pi}, \kappa_D^{K2\pi}, r_D^{K2\pi}$	CLEO+LHCb
$D \to h^+ h^- \pi^0$	$F_{\pi\pi\pi^0}, F_{KK\pi^0}$	CLEO
$D\to K^0_{\rm s}K^-\pi^+$	$\delta_D^{K_SK\pi}, \kappa_D^{K_SK\pi}, r_D^{K_SK\pi}$	CLEO
$D \to K^0_{\rm s} K^- \pi^+$	$r_D^{K_SK\pi}$	LHCb
$B^0 \to DK^{*0}$	$\kappa_{B}^{DK^{*0}}, \bar{R}_{B}^{DK^{*0}}, \Delta \bar{\delta}_{B}^{DK^{*0}}$	LHCb
$B^0_s \to D^\mp_s K^\pm$	ϕ_s	LHCb

Introduction LHCb Measuring γ DK combination Dh combination Summary Outlook

Backup Slides

C. Fitzpatrick

DK combination

Frequentist result:

Observable	Central value	68.3% Interval	95.5%Interval	99.7% Interval
γ (°)	72.2	[64.9, 79.0]	[55.9, 85.2]	[43.7, 90.9]
r_B^{DK}	0.1019	$\left[0.0963, 0.1075\right]$	$\left[0.0907, 0.1128\right]$	[0.0849, 0.1182]
$\delta_B^{DK}(^\circ)$	142.6	[136.0, 148.3]	[127.8, 153.6]	[116.2, 158.7]
$r_B^{DK^{*0}}$	0.218	[0.171, 0.263]	[0.118, 0.305]	[0.000, 0.348]
$\delta_B^{DK^{*0}}(^{\circ})$	189	[169, 212]	[148, 241]	[123, 283]

Bayesian result:

Observable	Central value	68.3% Interval	95.5% Interval	99.7% Interval
γ (°)	70.3	[62.4, 77.4]	[52.6, 83.5]	[42.1, 88.4]
r_B^{DK}	0.1012	[0.0954, 0.1064]	$\left[0.0900, 0.1120 ight]$	[0.0846, 0.1171]
$\delta_B^{DK}(^\circ)$	142.2	[134.7, 148.1]	[125.3, 153.7]	[113.2, 157.9]
$r_B^{DK^{*0}}$	0.204	[0.149, 0.253]	[0.073, 0.299]	[0.000, 0.322]
$\delta_B^{DK^{*0}}(^\circ)$	190.3	[165.8, 218.4]	[139.5, 263.4]	[117.8, 292.4]

 γ at LHCb

Introduction LHCb Measuring γ DK combination Dh combination Summary Outlook Backup Slides

C. Fitzpatrick

December 1, 2016

Good agreement between the DK combinations