EPOS and EAS

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany

CORSIKA School, Ooty, India December the 18th 2010

<xmax></xmax>	Cross section	Multiplicity	Muons	Baryons	Remnants	Pt
		Ou	tline			
		The EPO	OS model			
		<xmax></xmax>				
		➡ cross	section			
		🔶 multip	licity			
		Muons				
		🔶 remna	ints			
		🔶 baryoi	าร			
		LDF				
		➡ Pt				

Cross section

Multiplicity

Muons

Baryons

Remnants

Pt

The EPOS Model

EPOS* is a parton model, with many binary parton-parton interactions, each one creating a parton ladder.

- Energy-sharing : for cross section calculation AND particle production
- Parton Multiple scattering
- Outshell remnants
- Screening and shadowing via unitarization and splitting
- Collective effects for dense systems

EPOS can be used for minimum bias hadronic interaction generation (h-p to A-B) from 100 GeV (lab) to 1000 TeV (cms) : used for air shower !

EPOS designed to be used for particle physics experiment analysis (SPS, RHIC, LHC)

Pt

<Xmax>

Large spread of model predictions ! EPOS showers very deep ...

Multiplicity

Muons

Baryons

Remnants

Pt

Toy Model for Electromagnetic Cascade

Primary particle : photon/electron

Heitler toy model :

2 particles produced with equal energy

 $\begin{array}{ll} 2^n \text{ particles after} \\ n \text{ interactions} \end{array} \quad n = X/\lambda_e \end{array}$

$$N(X) = 2^{n} = 2^{X/\lambda_{e}} \qquad E(X) = E_{0}/2^{X/\lambda_{e}}$$

Assumption: shower maximum reached if $E(X_{max}) = E_c$ (critical energy)

$$N_{max} = E_0 / E_c$$
 $X_{max} \sim \lambda_e \ln(E_0 / E_c)$

Cross section

<Xmax>

Multiplicity

Muons

Barvons

Remnants

Pt

<Xmax> Theory

Using a simple generalized Heitler model to understand EAS characteristics :

- fixed interaction length
- equally shared energy
- 2 types of particles :
 - N_{had} continuing hadronic cascade until decay at E_{dec} producing muons (charged pions).
 - N_{em} transferring their energy to electromagnetic shower (neutral pions).

J. Matthews, Astropart. Phys. 22 (2005) 387-397

CORSIKA School – December 2010

- Model independent parameters :
 - E₀ = primary energy
 - λ_{a} = electromagnetic mean free path
- Model dependent parameters :
 - N_{tot} = total multiplicity
 - = hadronic mean free path λ_{ine}

Multiplicity

Pt

Hadronic Model Predictions

Pt

Cross Section Calculation : SIBYLL / QGSJET

Interaction amplitude given by parameterization (soft) or QCD (hard) and Gribov-Regge for multiple scattering :

- Image: elastic amplitude : -2χ(s,b)
 Image: sum n interactions : $\frac{(-2\chi)^n}{n!}$ → exp(-2χ)
 Image: optical theorem :
 Image: sum n interactions : $\frac{(-2\chi)^n}{n!}$ → exp(-2χ)
 Image: sum n interactions : $\frac{(-2\chi)^n}{n!}$ → exp(-2\chi)
 Image: sum n interactions : \frac{(-2\chi)^n}{n!} → exp(-2\chi)
 Image: sum n
 - $\rightarrow \chi(s,b)$ parameters fixed by pp cross-section
 - pp to pA or AA cross section from Glauber
 - energy conservation not taken into account at this level

Pt

Cross Section Calculation : EPOS

Different approach in EPOS :

- Gribov-Regge but with energy sharing at parton level
- amplitude parameters fixed from QCD and pp cross section
- cross section calculation take into account interference term

$$\Phi_{\rm pp}\left(x^+, x^-, s, b\right) = \sum_{l=0}^{\infty} \int dx_1^+ dx_1^- \dots dx_l^+ dx_l^- \left\{ \frac{1}{l!} \prod_{\lambda=1}^l -G(x_\lambda^+, x_\lambda^-, s, b) \right\}$$
$$\times F_{\rm proj}\left(x^+ - \sum x_\lambda^+\right) F_{\rm targ}\left(x^- - \sum x_\lambda^-\right).$$

 $\sigma_{\text{ine}}(s) = \int d^2b \left(1 - \Phi_{\text{pp}}(1, 1, s, b)\right) \Rightarrow \text{ can not use complex diagram like QII}$ with energy sharing (only Y and X)

> non linear effects taken into account as correction of single amplitude G

- Same cross section at pp level and low energy (data)
- extrapolation to pA or to high energy
 - different amplitude and scheme : different extrapolations

Low cross section in EPOS

Pt

Particle Production in SIBYLL and QGSJET

number n of exchanged elementary interaction per event fixed from elastic amplitude (cross section) :

→ n from :

$$P(n) = \frac{(2\chi)^n}{n!} \cdot \exp(-2\chi)$$

- no energy sharing accounted for (interference term)
- \rightarrow 2n strings formed from the n elementary interactions
 - \blacksquare in QGSJET II, n is increased by the subdiagrams
 - energy conservation : energy shared between the 2n strings
 - particles from string fragmentation
- inconsistency : energy sharing should be taken into account when fixing n
 - EPOS approach

Multiplicity

Particle Production in EPOS

m number of exchanged elementary interaction per event fixed from elastic amplitude taking into account energy sharing :

→ m from :

$$\Omega_{AB}^{(s,b)}(m,X^+,X^-) = \prod_{k=1}^{AB} \left\{ \frac{1}{m_k!} \prod_{\mu=1}^{m_k} G(x_{k,\mu}^+, x_{k,\mu}^-, s, b_k) \right\} \Phi_{AB} \left(x^{\text{proj}}, x^{\text{targ}}, s, b \right)$$

m and X fixed together by a complex Metropolis

- ➔ 2m strings formed from the m elementary interactions
 - energy conservation : energy fraction of the 2m strings given by X
- consistent scheme : energy sharing reduce the probability to have large m
- additional multiplicity reduction due to high density effect
 - statistical hadronization instead of string fragmentation
 - 🔶 larger Pt (flow)

Multiplicity

Muons

Baryons

Remnants

Pt

EPOS Basic Distributions

CORSIKA School – December 2010

Multiplicity

Muons

Remnants

Pt

EPOS Nuclear Interactions

T. Pierog, KIT - 14/43

Multiplicity

Muons

Baryons

Pt

Multiplicity

T. Pierog, KIT - 15/43

CORSIKA School – December 2010

Multiplicity

Muons

Baryons

Remnants

Pt

Pseudorapidity NSD CMS

Pseudorapidity ALICE Inel>0

T. Pierog, KIT - 17/43

Multiplicity

Muons

Baryons

Remnants

Pt

FD and **SD** mismatch

AUGER

- Comparison event-by-event
 - Fix simulated FD profile with data
 - Compare measured SD signal with simulated one

SD systematically lower in simulation : ~25 % shift in energy scale + ~50 % deficit in muon number (for QGSJETII-03)

TA

- Spectrum reconstruction
 - Spectrum using QGSJETII-03 for energy reconstruction
 - Renormalize energy using event seen by FD and SD using FD energy as reference

27 % shift in energy scale needed

Multiplicity

Muons

Baryons

Remnants

Pt

FD and **SD** mismatch

AUGER

- Comparison event-by-event
 - Fix simulated FD profile with data
 - Compare measured SD signal with simulated one

SD systematically lower in simulation : ~25 % shift in energy scale + ~50 % deficit in muon number (for QGSJETII-03)

TA •

- Spectrum reconstruction
 - Spectrum using QGSJETII-03 for energy reconstruction
 - Renormalize energy using event seen by FD and SD using FD energy as reference

27 % shift in energy scale needed

Is the problem seen using QGSJETII-3 with muons general?

Pt

Multiplicity

Muons

Baryons

Remnants

Pt

Muon Number

From Heitler

$$N_{\mu} = \left(\frac{E_0}{E_{dec}}\right)^{\alpha}, \quad \alpha = \frac{\ln N_{\pi^{ch}}}{\ln \left(N_{\pi^{ch}} + N_{\pi^0}\right)}$$

In real shower, not only pions : Kaons and (anti)Baryons (but 10 times less ...)

$$\alpha = \frac{\ln (N_{had})}{\ln (N_{tot})} = 1 + \frac{\ln (R)}{\ln (N_{tot})}$$
$$R = \frac{N_{had}}{N_{tot}} \approx \frac{N_{\pi^{ch}} + N_B}{N_{\pi^{ch}} + N_B + N_{\pi^0}}$$
Very important :

in (anti)Baryon-Air interactions, no leading neutral pion ! R~1

R depends on the number of (anti)B in p- or π -Air interactions

More fast (anti)baryons = $\alpha \rightarrow 1$ = more muons

T. Pierog et al., Phys. Rev. Lett. 101 (2008) 171101

Muons

Remnants

Pt

Total Number of Muons

Discrepancy (baryon and pion spectra) between models Much more muons in EPOS

CORSIKA School – December 2010

Multiplicity

Muons

Remnants

Pt

Forward Spectra

Forward particles mainly from projectile remnant

The inelasticity is closely related to diffraction and forward spectra

- SIBYLL
 - No remnant except for diffraction
 - Leading particle from string ends

➡ QGSJET

- Low mass remnants
- Leading particle similar to proj.
- EPOS
 - Low and high mass remnants
 - Any type of leading particle
 - from resonance
 - from string
 - from statistical decay

Cross section Multiplicity Muons Baryons Remnants Remnants in SIBYLL

In SIBYLL : valence quarks attached to main string

- limited quark exchange
- very hard baryon and meson spectra
- string fragmentation
 - forward particle can be anything

Π

<Xmax>

Remnants in EPOS

In EPOS : any possible quark/diquark transfer

- Diquark transfer between string ends and remnants
- Baryon number can be removed from nucleon remnant :
 - Baryon stopping
- Baryon number can be added to pion/kaon remnant :
 - Baryon acceleration

Remnants

Baryons and Remnants

Parton ladder string ends :

Problem of multi-strange baryons at low energy (Bleicher et al., Phys.Rev.Lett.88:202501,2002)

Wide range of excited remnants (from light resonances to beaut quark b)

Multiplicity

Muons

Baryons

Remnants

Pt

Baryon Forward Spectra

- Large differences between models
- Need a new remnant approach for a complete description (EPOS)
- Problems even at low energy
- No measurement at high energy !

Baryons in Pion-Carbon

Very few data for baryon production from meson projectile, but for all :

- strong baryon acceleration (probability ~20% per string end)
- proton/antiproton asymmetry (valence quark effect)
- target mass dependence

Multiplicity

Muons

Baryons

Remnants

Pt

Diffraction and x Distributions

- most of the data at low energy (fixed target experiment)
- extrapolation tested with HERA data
- But large differences at CR energies

CORSIKA School – December 2010

Muons

Baryons

[Remnants]

Scaling with Energy

Pt

Lateral Distribution Function and Pt

 Electromagnetic particles and muons detected far from the core produced by pions with low longitudinal momentum

Transverse momentum (Pt) important

Detailed treatment in EPOS

- <Pt> of baryons larger than the one from pions
 - More baryons in EPOS : <Pt> larger
 - Effect increase by collective effect

EPOS have flatter LDF due to the baryons and their <Pt>

Pt

LDF

cf. J. Knapp talk this morning

Multiplicity

Muons

Baryons

Remnants

Pt

pp @ 200 GeV

EPOS reference spectra for RHIC

Muons

Baryons

Remnants

Pt)

dAu @ 200 GeV

EPOS tested at RHIC

CORSIKA School – December 2010

T. Pierog, KIT - 36/43

Muons

Baryons

Remnants

Pt

dAu @ 200 GeV

QGSJETII results : not trivial

CORSIKA School – December 2010

T. Pierog, KIT - 37/43

Multiplicity

Muons

Baryons

Remnants

Pt

AuAu @ 200 GeV

EPOS used for heavy ion collisions

CORSIKA School – December 2010

T. Pierog, KIT - 38/43

Pt

CMS Transverse Momentum p₊

Muons

Baryons

Remnants

Pt

ALICE Identified Spectra 900 GeV

Multiplicity

Muons

Baryons

Remnants

Pt

CMS Strangeness 7 TeV

Summary

- EPOS = hadronic interaction model constructed to understand accelerator data and used for CR
 - Multiple scattering done on a solid theoretical basis
 - Treats nonlinear effects (=>dAu@RHIC)
 - Collective effects
 - Carefully tested (hh, hA, AA)
 - "Mini-plasma" in pp at LHC (900 GeV) and higher energy

EAS with EPOS

- deeper shower
- more muons because of baryons
- now compatible with all cosmic ray experiment (KASCADE, KASCADE-Grande, CASA-MIA, Yakutsk, Auger, ...)
 - consistent but not the same primary mass than QGSJET !

Outlook

EPOS 2 :

- Improved screening and diffractive treatment to multiple scattering in better agreement with LHC
- Complete 3D hydrodynamical calculation

Hydro on event-by-event basis :

- for AuAu@RHIC, explains naturally nontrivial features as "ridge" correlations, elliptical flow
- Explains some nontrivial pp results (ridge, BE correlations)

On-going developments :

- Test all Min Bias LHC data
- Improvement of hard events (jets) in MB
- Selection of hard processes (specific born Pt)
- Both at the same time : underlaying events