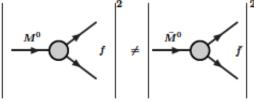
Measurements of direct CPV in two-body charm decays at LHCb

Angelo Carbone

on behalf of LHCb Collaboration INFN and University of Bologna

CKM 2016 Mumbai, India Nov 28–Dec. 2, 2016


Charm and New Physics

- In indirect searches for new physics, charm furnishes a unique probe of flavour physics in the up-quark sector
 - complementary to strange and bottom physics
- Indirect searches for NP with charm gives complementary constraints to direct searches at the Energy Frontier
- Precision measurements in charm are necessary as inputs for B physics $(B \rightarrow DK, B \rightarrow D\pi)$ and the measurement of the CKM angle γ
- Many "null-tests" available, one of them is the search for CP violation, which is expected to be small in SM (but not zero)
 - ... but SM predictions are difficult to be calculated

The direct CPV

CPV in decay occurs when the absolute value of the decay rate $M \rightarrow f$ differs from the decay rate involving the CP-conjugate states

$$|A(M^0 \to f)| \neq \left|A\left(\overline{M}^0 \to \overline{f}\right)\right|$$

CPV can happens if the final state can be reached at least with two different path

The amplitude of a CP eingenstate, i.e. $D^0 \rightarrow f$ with $f = K^-K^+$ or $f = \pi^-\pi^+$, it can be written with a leading term and a sub-leading as follows

Sub-leading amplitude: with relative strong (δ_f) and weak (ϕ_f) phases

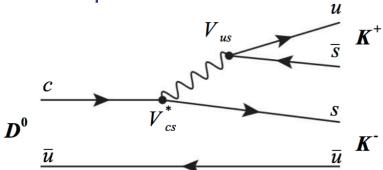
$$A_f = A_f^T \left(1 + r_f e^{i(\delta_f + \phi_f)} \right)$$

Leading amplitude: its phase is taken to be zero

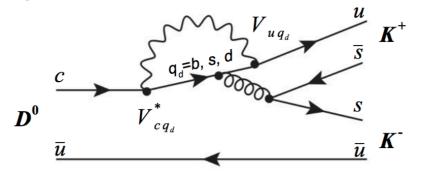
CP violation in the decay can be observed if the asymmetry

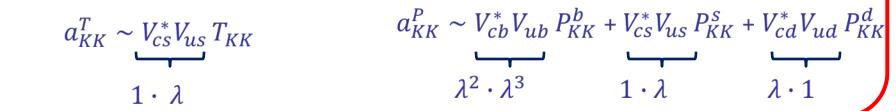
$$A_{CP}^{dir}(D^0 \to f) = \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 + |\bar{A}_{\bar{f}}|^2}$$

is different from zero


In the limit where $r_f \ll 1$ (which is a good approximation)

$$A_{CP}^{dir}(D^0 \to f) = -2r_f \sin \delta_f \sin \phi_f$$


Necessary condition to observe direct CP violation is that r_f, δ_f and ϕ_f are all different from zero


Singly Cabibbo Suppressed (SCS) decay, e.g. $D^0 \rightarrow K^- K^+$

Tree amplitude

Penguin amplitude

Using unitarity on the last term of the penguin amplitude, it follows:

$$A_{KK} = a_{KK}^{T} + a_{KK}^{P} = V_{cs}^{*}V_{us}(T_{KK} + P_{KK}^{s} - P_{KK}^{d}) + V_{cb}^{*}V_{ub}(P_{KK}^{b} - P_{KK}^{d})$$

$$A_{KK}^{T}\mathcal{O}(\lambda) \qquad A_{KK}^{P}\mathcal{O}(\lambda^{5})$$

Angelo Carbone

The direct CPV

Grossman, Kagan, Nir Phys.Rev.D75 Bucella F. et al. Phys.Lett. B302 (1993) 319-325 Petrov, A. J.Phys.Conf.Ser. 556 (2014) Santorelli, P. See talk@CHARM2016 Giudice, Isidori, Paradisi JHEP 1204 (2012) 060

In the Standard Model direct CP violation is naively estimated to be

 $A_{CP}^{dir}(D^0 \to KK) \sim 10^{-3} - 10^{-4}$

Non-perturbative QCD as well as New Physics effects can contribute to enhance CPV → but we already know that these effects can not be large

In the U-spin symmetric limit $(d \leftrightarrow s)$, the same calculations holds for the $\pi\pi$ final state, with $A_{CP}^{dir}(D^0 \rightarrow KK) = -A_{CP}^{dir}(D^0 \rightarrow \pi\pi)$

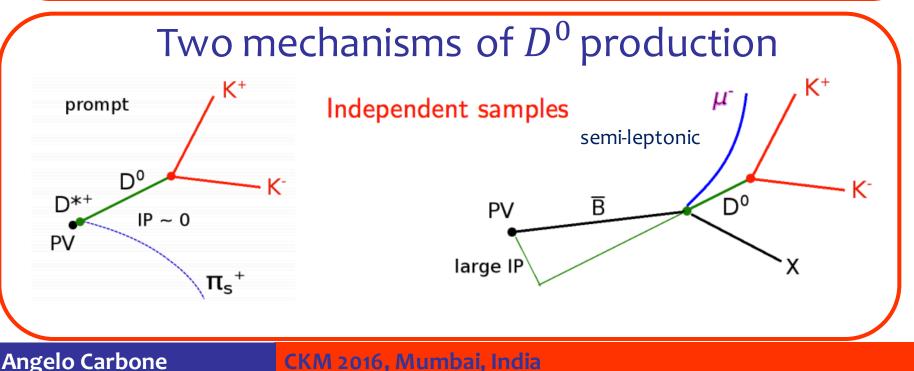
The direct CPV

Grossman, Kagan, Nir Phys.Rev.D75 Bucella F. et al. Phys.Lett. B302 (1993) 319-325 Petrov, A. J.Phys.Conf.Ser. 556 (2014) Santorelli, P. See talk@CHARM2016 Giudice, Isidori, Paradisi JHEP 1204 (2012) 060

In the Standard Model direct CP violation is naively estimated to be

 $A_{CP}^{dir}(D^0 \to KK) \sim 10^{-3} - 10^{-4}$

Non-perturbative QCD as well as New Physics effects can contribute to enhance CPV \rightarrow but we already know that these effects can not be large

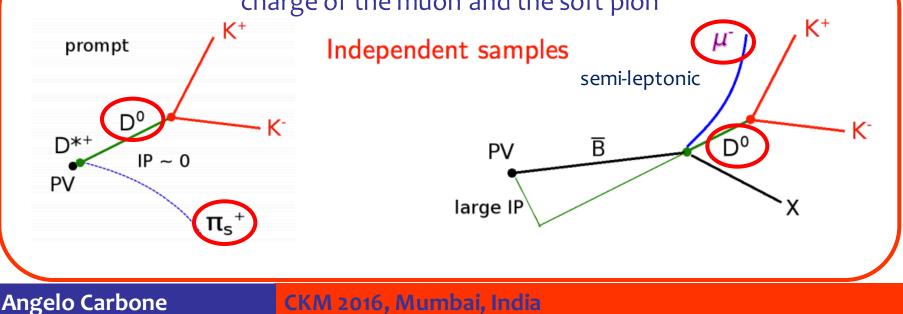

Direct CP violation is not yet observed

In the O-spin symmetric limit ($a \leftrightarrow s$), the same calculations holds for the $\pi\pi$ final state, with $A_{CP}^{dir}(D^0 \rightarrow KK) = -A_{CP}^{dir}(D^0 \rightarrow \pi\pi)$

Charm and D^o production at LHC

LHCb is designed for beauty physics, but it offers a great opportunity to perform charm physics as well

 $\sigma(pp \to c\bar{c}) = \begin{array}{ll} (1419 \pm 134)\mu b & @ \ 7\text{TeV} & \text{Nucl.Phys.B871(2013)1} \\ (2940 \pm 240)\mu b & @ \ 13\text{TeV} & \text{JHEP03(2016)159} \\ \text{About 20 times more } b\bar{b} & p_{\text{T}} < 8 \text{ GeV/c}, \ 2.0 < y < 4.5 \end{array}$

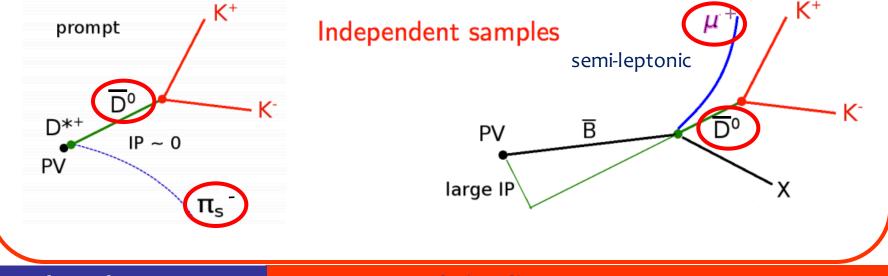


Charm and D^o production at LHC

LHCb is designed for beauty physics, but it offers a great opportunity to perform charm physics as well

 $\sigma(pp \to c\bar{c}) = \begin{array}{ll} (1419 \pm 134)\mu b & @ \ 7\text{TeV} & \text{Nucl.Phys.B871(2013)1} \\ (2940 \pm 240)\mu b & @ \ 13\text{TeV} & \text{JHEP03(2016)159} \\ \text{About 20 times more } b\bar{b} & p_{\text{T}} < 8 \text{ GeV/c}, \ 2.0 < y < 4.5 \end{array}$

Experimentally we can tag D^0 flavour at production by means of the charge of the muon and the soft pion



Charm and D^o production at LHC

LHCb is designed for beauty physics, but it offers a great opportunity to perform charm physics as well

 $\sigma(pp \to c\bar{c}) = \begin{array}{ll} (1419 \pm 134)\mu b & @ \ 7\text{TeV} & \text{Nucl.Phys.B871(2013)1} \\ (2940 \pm 240)\mu b & @ \ 13\text{TeV} & \text{JHEP03(2016)159} \\ \text{About 20 times more } b\bar{b} & p_{\text{T}} < 8 \text{ GeV/c}, \ 2.0 < y < 4.5 \end{array}$

Angelo Carbone

Charm physics at LHCb

- Unprecedented charm yields at LHC produced world best measurements:
 - Mixing and CPV in D^o \rightarrow K π [PRL 111 (2013) 251801, LHCb-PAPER-2016-033 submitted to PRD, Phys. Rev. Lett. 116 (2016)]
 - Direct CPV with ΔA_{CP} [JHEP 07 (2014) 041, LHCb-CONF-2013-003]
 - Indirect CPV in A_Γ [LHCb-CONF-2016-009, LHCb-CONF-2016-010, PRL 112 (2014) 041801]
 - CP violation searches in multibody decays [LHCb-CONF-2016-008, PLB 726 (2013) 623, PLB 728 (2014) 585, JHEP 10 (2014) 005 ...]
- Still statistically dominated in core measurements

TODAY:

- Measurement of direct CP asymmetry in $D^0 \rightarrow K^-K^+$ [LHCb-PAPER-2016-033, submitted to PLB]
- Measurement of the difference of time-integrated CP asymmetries in $D^0 \rightarrow K^-K^+$ and $D^0 \rightarrow \pi^-\pi^+$ [arXiv:1602.03160, Phys. Rev. Lett. 116 (2016) 191601]

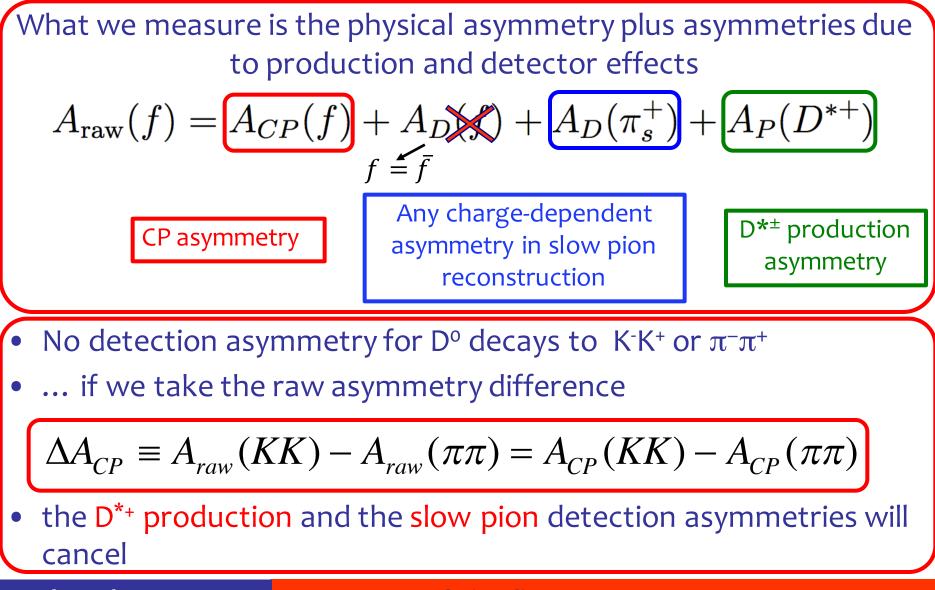
Measurement of the difference of time-integrated CP asymmetry in $D^0 \rightarrow K^-K^+$ and $D^0 \rightarrow \pi^-\pi^+$ decayLHCb-PAPER-2015-055
Phys. Rev. Lett. 116 (2016) 191601

Time-integrated CP asymmetry

CP asymmetry is defined as

$$A_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)}$$

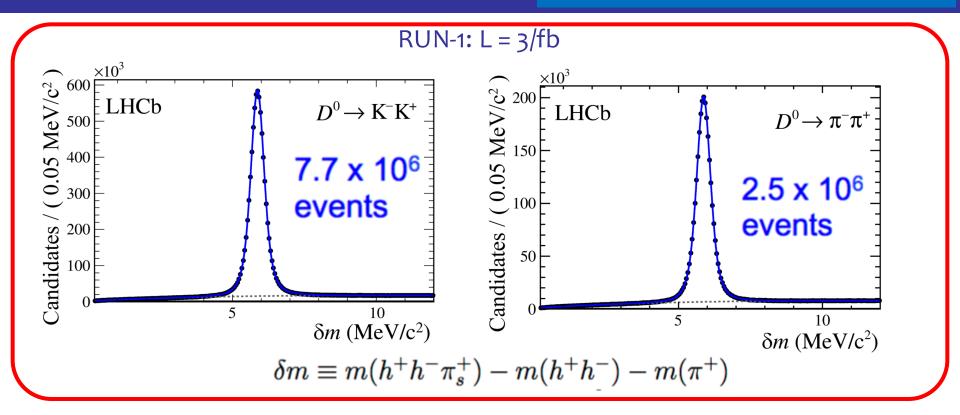
with $f=K^-K^+$ and $f=\pi^-\pi^+$


The flavour of the initial state (D^o or \overline{D}^{o}) is tagged by the charge of the slow pion from, $D^{*\pm} \rightarrow D^{o}\pi^{\pm}$

The raw asymmetry for tagged D^o decays to a final state f is given by

$$A_{raw}(f) = \frac{N(D^{*+} \to D^{0}\pi^{+}) - N(D^{*-} \to \overline{D}^{0}\pi^{-})}{N(D^{*+} \to D^{0}\pi^{+}) + N(D^{*-} \to \overline{D}^{0}\pi^{-})}$$

where N refers to the number of reconstructed events of decay after background subtraction


Production and detection asymmetries

Angelo Carbone

Signal yields

LHCb-PAPER-2015-055, PRL 116 (2016) 191601

Signal yields and A_{raw} are obtained from minimum χ^2 fits to the binned δ_m distributions of the $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$ samples in the D^0 signal regions

Angelo Carbone

Results

LHCb-PAPER-2015-055, PRL 116 (2016) 191601

Source	uncertainty [%]
Fit Model	0.016
Multiple candidates	0.015
Peaking background	0.011
Reweighting	0.004
Fiducial cut	0.017
Secondaries	0.004
Total	0.030

Systematic uncertainties well below statistical error

 $\Delta A_{CP} = (-0.10 \pm 0.08 \text{ (stat)} \pm 0.03 \text{ (syst)})\%$

This is the most precise measurement of a time-integrated CP asymmetry in the charm sector from a single experiment.

In agreement with the LHCb muon-tagged measurement: Run-1 3/fb

 $\Delta A_{CP} = 0.14 \pm 0.16^{\text{stat}} \pm 0.08^{\text{syst}}$ %

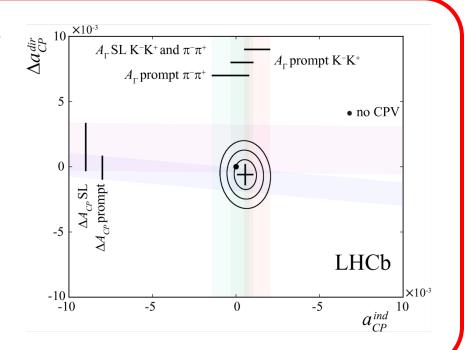
LHCb-PAPER-2014-069 JHEP 04 (2015) 043

Results

LHCb-PAPER-2015-055, PRL 116 (2016) 191601

The observable ΔA_{CP} is mostly sensitive to direct CP asymmetry, Δa^{dir}_{CP} , but with a small contribution also to indirect CP asymmetry, a^{ind}_{CP}

$$\Delta A_{CP} \equiv A_{CP} (K^{-}K^{+}) - A_{CP} (\pi^{-}\pi^{+})$$


$$\approx \Delta a_{CP}^{\text{dir}} \left(1 + \frac{\langle t \rangle}{\tau} y_{CP}\right) + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{\text{ind}}$$

$$\sim 2 \times 10^{-4} \qquad \sim 0.12$$

Combination with LHCb measurements

 $\Delta a_{CP}^{dir}(-0.061 \pm 0.076)\%$ $a_{CP}^{ind}(0.058 \pm 0.044)\%$

The result is consistent with the hypothesis of CP symmetry with a p-value of 0.32

Measurement of CP asymmetry in $D^0 \rightarrow K^-K^+$ decay

LHCb-PAPER-2016-035 Submitted to PLB

The single asymmetry $A_{CP}(KK)$

In order to measure the single asymmetry it is necessary to know the pion detection asymmetry $A_D(\pi_s^+)$ and the D^{*+} production asymmetry $A_P(D^{*+})$

 $A_{raw}(KK) = A_{CP}(KK) + A_P(D^{*+}) + A_D(\pi_s^+)$

The raw asymmetry for $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$, $A_D(\pi_S^+)$ cancel

 $A_{raw}^{*}(K\pi) = A_{CP}(K\pi) + A_{D}(K\pi) + A_{P}(D^{*+}) + A_{D}(\pi_{s}^{+})$

In the difference between the two A_{raw} , $A_P(D^{*+})$ and $A_D(K\pi)$ cancel

$$A_{raw}(KK) - A^*_{raw}(K\pi) = A_{CP}(KK) - A_D(K\pi)$$

It is still necessary to measure $A_D(K\pi)$

Angelo Carbone

$A_D(K\pi)$ measurement

It is measured using the $D^+ \to K^- \pi^+ \pi^+$ and $D^+ \to K_S^0 \pi^+$ decay $A_{raw}(K\pi\pi) = A_D(K\pi) + A_P(D^+) + A_D(\pi^+)$ $A_{raw}(K_S^0\pi) = A_D(K_S^0) + A_P(D^+) + A_D(\pi^+)$

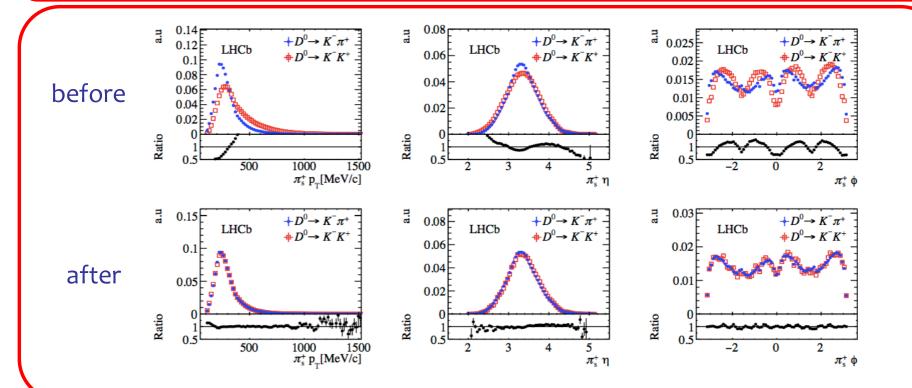
from the difference of the above asymmetries, $A_P(D^+)$ and $A_D(\pi^+)$ cancel out

$$A_{raw}(K\pi\pi) - A_{raw}(K_{s}^{0}\pi) = A_{D}(K\pi) + A_{D}(K_{s}^{0})$$

 $A_D(K_s^0)$ include CP violation, mixing and interaction with the material, all the effects are known and found to be small

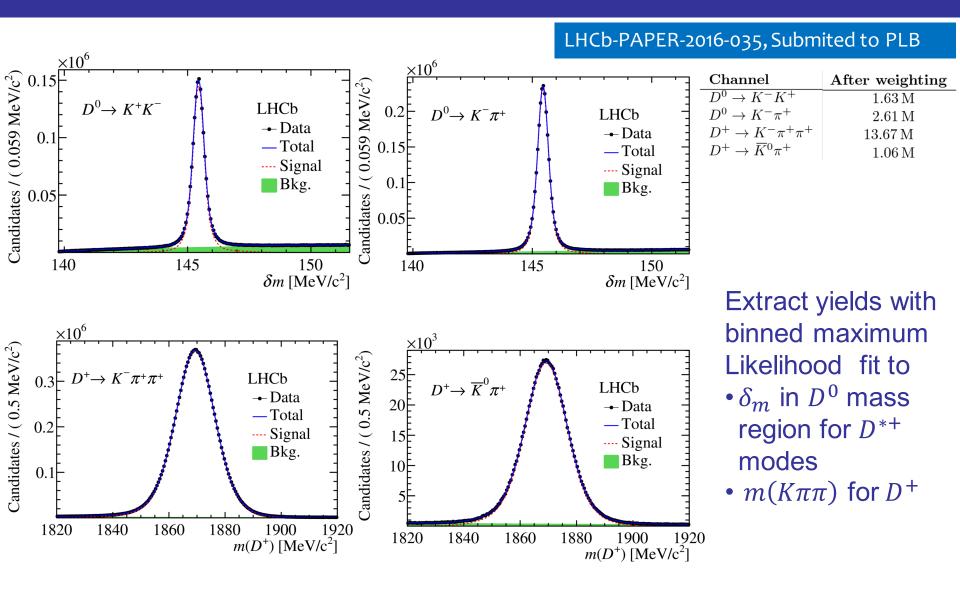
 $A_D(K_S^0) = (0.054 \pm 0.014)\%$

LHCb-PAPER-2014-069 JHEP 04 (2015) 043


Angelo Carbone

The single asymmetry $A_{CP}(KK)$

LHCb-PAPER-2016-035, Submited to PLB


All the raw asymmetry differences work if the kinematics of the various decays involved match

Kinematic reweighting is applied, for example between $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow K^- \pi^+$

Angelo Carbone

Signal and control channels yields

Angelo Carbone

The single asymmetry $A_{CP}(KK)$

$$A_{CP}(K^-K^+) = (0.14 \pm 0.15 \,(\text{stat}) \pm 0.10 \,(\text{syst}))\%$$

Category	${\bf Systematic\ uncertainty} [\%]$	
Determination of raw asymmetries:		
Fit model	0.025	
Peaking background	0.015	
Cancellation of nuisance asymmetries:		
Additional fiducial cuts	0.040	
Weighting configuration	0.062	
Weighting simulation	0.054	
Secondary charm meson	0.039	
Neutral kaon asymmetry	0.014	
Total	0.10	

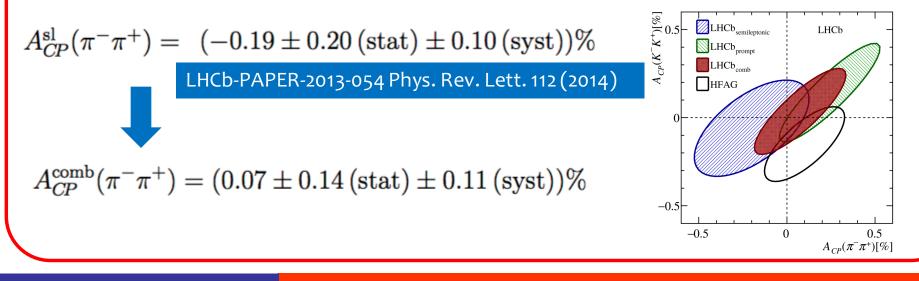
This result can be combined with the previous LHCb measurement based on a data sample of $D^0 \rightarrow K^-K^+$ decays from semi-leptonic *B* decays

$$A_{CP}^{\rm sl}(K^-K^+) = (-0.06 \pm 0.15 \,(\text{stat}) \pm 0.10 \,(\text{syst}))\%$$

LHCb-PAPER-2013-054 Phys. Rev. Lett. 112 (2014)

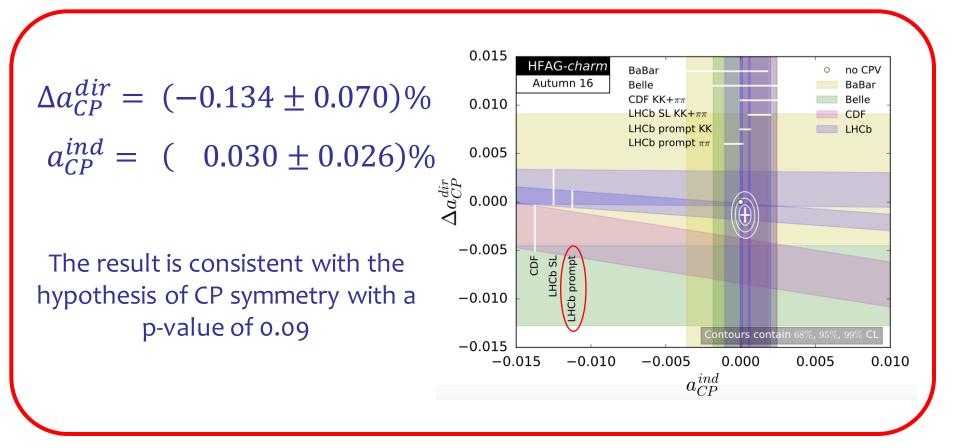
$$A_{CP}^{\text{comb}}(K^-K^+) = (0.04 \pm 0.12 \,(\text{stat}) \pm 0.10 \,(\text{syst}))\%$$

Combination with previous LHCb measurements


LHCb-PAPER-2016-035, Submited to PLB

From the previous ΔA_{CP} mesurement, is possible to measure $A_{CP}(\pi\pi)$

 $A_{CP}(\pi^+\pi^-) = A_{CP}(K^+K^-) - \Delta A_{CP} = (0.24 \pm 0.15 \,(\text{stat}) \pm 0.11 \,(\text{syst}))\%$


with a correlation between the two mesurements $\rho(A_{CP}(KK), A_{CP}(\pi\pi)) = 0.24$

This result can be combined with the previous LHCb measurement based on a data sample of $D^0 \rightarrow \pi^- \pi^+$ decays from semi-leptonic *B* decays

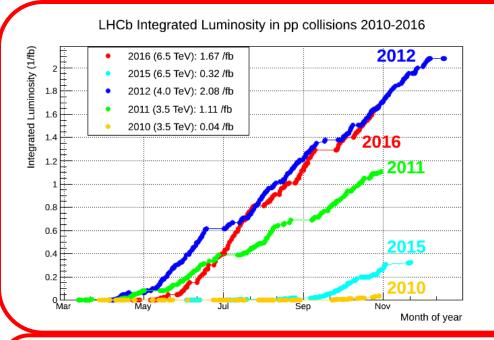
Angelo Carbone

Current experimental status HFAG

CKM 2016, Mumbai, India

Angelo Carbone

Current experimental status HFAG


Year	Experiment	CP Asymmetry in the decay mode D0 to π + π -	$[\Gamma(D0)-\Gamma(D0bar)]/[\Gamma(D0)+\Gamma(D0bar)]$
2014	LHCb	R. Aaij et al. (LHCb Collab.), JHEP 07, 041 (2014).	$-0.0020 \pm 0.0019 \pm 0.0010$
2012	CDF	T. Aaltonen et al. (CDF Collab.), Phys. Rev. D 85, 012009 (2012).	$+0.0022 \pm 0.0024 \pm 0.0011$
2008	BABAR	B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008).	$-0.0024 \pm 0.0052 \pm 0.0022$
2008	BELLE	M. Staric et al. (BELLE Collab.), Phys. Lett.B 670, 190 (2008).	$+0.0043 \pm 0.0052 \pm 0.0012$
2002	CLEO	S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).	$+0.019 \pm 0.032 \pm 0.008$
2000	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000).	$+0.048 \pm 0.039 \pm 0.025$
1998	E791	E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998).	$-0.049 \pm 0.078 \pm 0.030$
•		COMBOS average	-0.0000 ± 0.0015

Year	Experiment	CP Asymmetry in the decay mode D0 to K+K-	$[\Gamma(D0)-\Gamma(D0bar)]/[\Gamma(D0)+\Gamma(D0bar)]$
2014	LHCb	R. Aaij et al. (LHCb Collab.), JHEP 07, 041 (2014).	$-0.0006 \pm 0.0015 \pm 0.0010$
2012	CDF	T. Aaltonen et al. (CDF Collab.), Phys. Rev. D 85, 012009 (2012).	$-0.0024 \pm 0.0022 \pm 0.0009$
2008	BABAR	B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008).	$+0.0000 \pm 0.0034 \pm 0.0013$
2008	BELLE	M. Staric et al. (BELLE Collab.), Phys. Lett.B 670, 190 (2008).	$-0.0043 \pm 0.0030 \pm 0.0011$
2002	CLEO	S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).	$+0.000 \pm 0.022 \pm 0.008$
2000	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000).	$-0.001 \pm 0.022 \pm 0.015$
1998	E791	E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998).	$-0.010 \pm 0.049 \pm 0.012$
•		COMBOS average	-0.0016 ± 0.0012

Great impact of LHCb on the world averages

Angelo Carbone

Prospects

Run-2: collected about 2fb⁻¹ (a) $\sqrt{s} = 13$ TeV

Net statistics on $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ and control channels increased by a factor 2-3 with respect to the Run-1 Run-1 + Run-2 $\rightarrow \sigma(\Delta A_{CP}) \sim 5 \times 10^{-4}$

 $\sigma(A_{CP}(KK))$ dominated by the precision on $A_D(K\pi) \rightarrow$ expected to break the wall and go below 10^{-3} with Run-1 + Run-2 New results expected for next winter conferences

Angelo Carbone

Conclusions

Currently LHCb has a leading role in the search for direct CP violation in the charm sector

Two-body charm decays are the more promising decays

Naively SM calculations foresee direct CP violation to be in the range $10^{-3} - 10^{-4}$

With RUN-1 data, LHCb excluded large values of direct CP violation, i.e. $> 10^{-2}$

With RUN-2 data collected so far, LHCb will reach the SM predictions, breaking the wall of 10^{-3} in precision also for a single A_{CP} measurement