

Hydrophobic silica/H₂O interface studied by sum-frequency vibrational spectroscopy (SFVS)

Fanjin Lu¹, Huiling Chen¹, Xinyi Liu¹, Xin Lin¹, Wei-Tao Liu^{1*}

1 State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai, 200433, China

Introduction

Hydrophobic and hydrophilic interactions are ubiquitous at metal, protein, and mineral oxide/water interfaces. The essential physical and chemical reactions involved are affected by the microscopic hydrophobic and hydrophilic interactions that are not easily extracted by macroscopic measurements such as the contact angle.

 $C = \frac{4.5 \text{ SiOH/nm}^2}{4 + (\hat{A})^8} = \frac{12}{12} = \frac{12}{4 + (\hat{A})^8} = \frac{12}{12} = \frac{12}$

A 3.5 SiOH/nm²

B 3.5 SiOH/nm²

Deprotonation/Protonation Dehydroxylated

Correlation between molecular and macroscopic hydrophobicity Hydrophobic patches at macroscopic hydrophilic silica/water interface

Surficial reactions at silica/water interface

Samples(SiO₂) treatment

✓ Hydrophilic film : UV 30min and soaked in H_2SO_4 for 2h

✓ Hydrophobic film :
Hydrophilic film annealed
in vacuum at 1223K for 4h

Results

Deprotonation — Hydrophilic vs. Hydrophobic

Cation effect @ hydrophobic SiO₂/ H_2O interface

The deprotonation process (Si-OH \rightarrow Si-O⁻ + H⁺) is hindered (<pH8) at hydrophobic SiO₂/ H₂O interface in Na⁺ but accelerated in Cs⁺.

pH cycle

- □ It takes multiple acid-base cycles to fully re-hydroxylate the SiO₂ surface.
- a ~1060cm-1 peak appears consistently in the protonation/deprotonation gap (neither Si-OH nor SiO⁻) during the pH cycle, which is not observed at the hydrophilic SiO₂ /H₂O interface.

- Most of the Si-OHs are dehydroxylated and converted to metastable Si-O-Si rings at the hydrophobic SiO₂/Air interface.
- High-pKa Si-OHs with weak H-bond recover partly in water at pH2 because of the hydrolysis of metastable Si-O-Si rings.
- > Cs⁺ has a specific interaction with the hydrophobic SiO₂/H₂O interface, which promotes the deprotonation process.
- ➢ pH cycle results suggest that different protonation/deprotonation mechanisms at the hydrophobic SiO₂/H₂O interface.

References

E. H. G. Backus et al. In: *Proc. Natl. Acad. Sci* **116** (5 2019), p. 1520-1525.
A. J. Mcquillan et al. In: *Langmuir* **32**, (6 2016), p. 1568–1576
N. G. Green et al. In: *J. Colloid. Interf. Sci* **451**, (2015), p. 231-244.

Thank you