

9th International Workshop on the Unitarity Triangle (CKM2016) TIFR, Mumbai, 1/12/2016

Measurements of Mixing and Indirect CPV in multi-body Charm decays at LHCb

on behalf the LHOb Collaboratio

- Mixing and Indirect CP Violation in Charm decays
- Mixing and Coherence Factor in $D^0{\longrightarrow}K^{\mp}\pi^{\pm}\pi^{-}\pi^{+}$
- Mixing in $D^0 \rightarrow K^0 {}_{S}\pi^{+}\pi^{-}$
- LHCb Prospects for Run2

Mixing of Neutral Mesons

Pure Quantum Mechanics effect

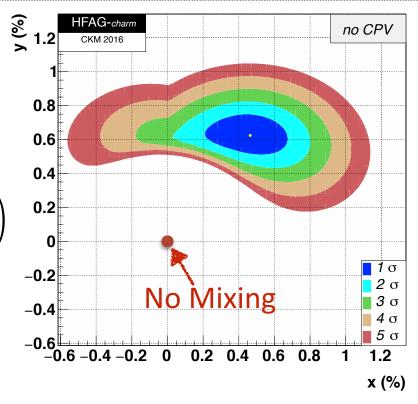
$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0(t)\\ \overline{D}^0(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} D^0(t)\\ \overline{D}^0(t) \end{pmatrix}$$

- By labelling the mass eigenstates $\left|D_{1,2}\right\rangle = p \left|D^{0}\right\rangle \pm q \left|\overline{D}^{0}\right\rangle$
- The mixing parameters can be defined

$$x \equiv \frac{m_2 - m_1}{\Gamma} = \frac{\Delta M}{\Gamma} \qquad y \equiv \frac{\Gamma_2 - \Gamma_1}{2\Gamma} = \frac{\Delta \Gamma}{2\Gamma}$$

Mixing in Charm Decays

Mixing of Neutral Mesons

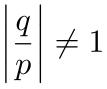

Pure Quantum Mechanics effect

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0(t) \\ \overline{D}^0(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma} \right) \begin{pmatrix} D^0(t) \\ \overline{D}^0(t) \end{pmatrix}$$

- By labelling the mass eigenstates $\left|D_{1,2}\right\rangle = p \left|D^{0}\right\rangle \pm q \left|\overline{D}^{0}\right\rangle$
- The mixing parameters can be defined

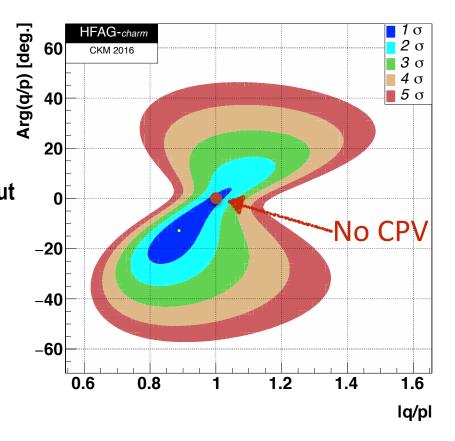
$$x \equiv \frac{m_2 - m_1}{\Gamma} = \frac{\Delta M}{\Gamma}$$

Established!



$$y \equiv \frac{\Gamma_2 - \Gamma_1}{2\Gamma} = \frac{\Delta\Gamma}{2\Gamma}$$

Mixing and Indirect CPV in Charm Decays


CPV and Mixing

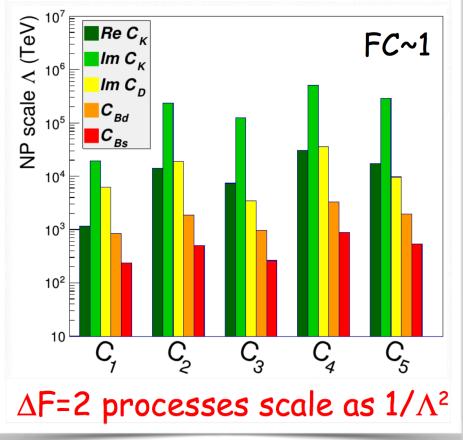
• CPV can arise from mixing

- or from interference of decay with and without mixing $D^0 \to f; D^0 \to \overline{D}^0 \to f$ $\arg(\lambda_f) + \arg(\lambda_{\overline{f}}) \neq 0$ $\lambda_f \equiv \frac{q}{p} \frac{\overline{A}_f}{\overline{A}_f}$
- Still consistent with no CPV

Introduction

A Portal for BSM Physics

Indirect Searches


- Charm mixing sets the second stringent bounds on NP from $\Delta F=2$ processes
- Not as much powerful on other models (NMFV), but still worth considering

Up-sector

TOLE POLYTECHNIOLI

- Charm probes up-sector quark mixing Alternative path to NP
- Very small SM expectations

UTFit Collaboration, 2016 Bounds from $\Delta F=2$ processes, generic flavour structure

BSM Physics

Cons

- Lower efficiency than two-body
- Long-range dynamics more difficult to predict
- May need understanding the resonant structure of the decay

Pros

- Large number of intermediate states offer many possible interference patters
- More observables exploiting the underlying resonant structure
- Useful for γ measurement using $B \rightarrow D^0 K$

Phys. Rev. Lett. 116, 241801 (2016)

$D^0 \rightarrow K\pi\pi\pi$ Mixing and Coherence Factor

WS/RS Ratio

_

Exploits mixing by measuring the time-dependent ratio of D⁰→K⁺π⁻π⁺π⁻ (WS) decays to D⁰→K⁻π⁺π⁺π⁻ (RS) decays (assuming CP symmetry)

$$R(t) \approx \left(r_D^{K3\pi}\right)^2 - r_D^{K3\pi} R_D^{K3\pi} y'_{K3\pi} \frac{t}{\tau} + \frac{x^2 + y^2}{4} \left(\frac{t}{\tau}\right)^2$$

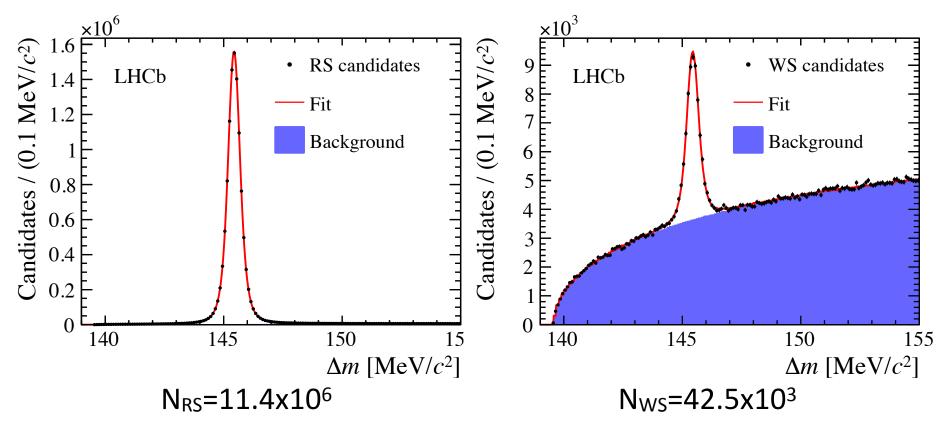
phase space averaged ratio of DCS/CF amplitudes

coherence factor:
$$R_D^{K3\pi} e^{-i\delta_D^{K3\pi}} \equiv \langle \cos \delta \rangle + i \langle \sin \delta \rangle$$

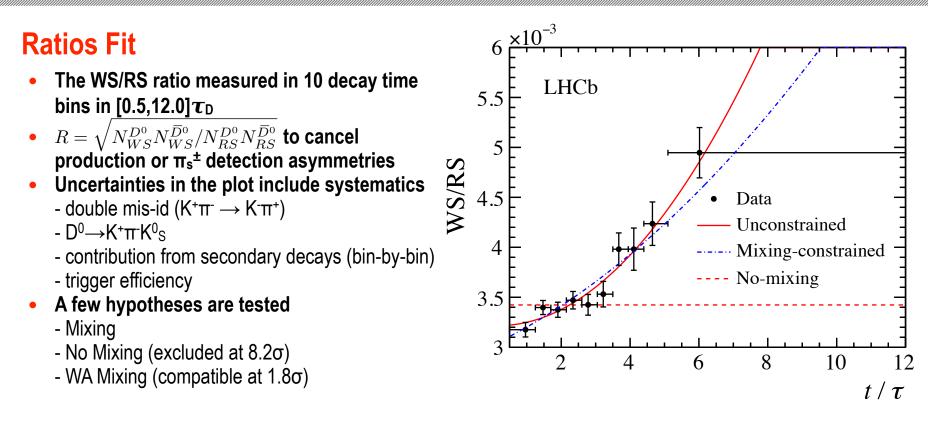
interference term:
$$y'_{K3\pi} \equiv y \cos \delta_D^{K3\pi} - x \sin \delta_D^{K3\pi}$$

All the three parameters are needed for measuring γ with B \rightarrow D⁰(K $\pi\pi\pi$)K

 $r_D^{K3\pi}$

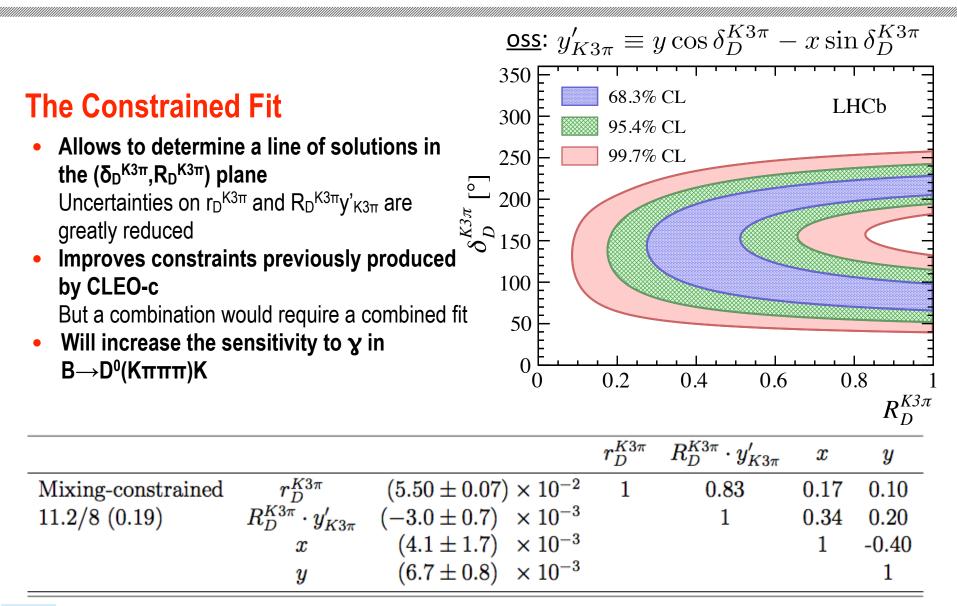

 $R_D^{K3\pi}$

 $y'_{K3\pi}$


Dataset

- Prompt $D^{*+} \rightarrow D^0 \pi^+$ decays
- Run1: 3fb⁻¹ at 7 and 8 TeV

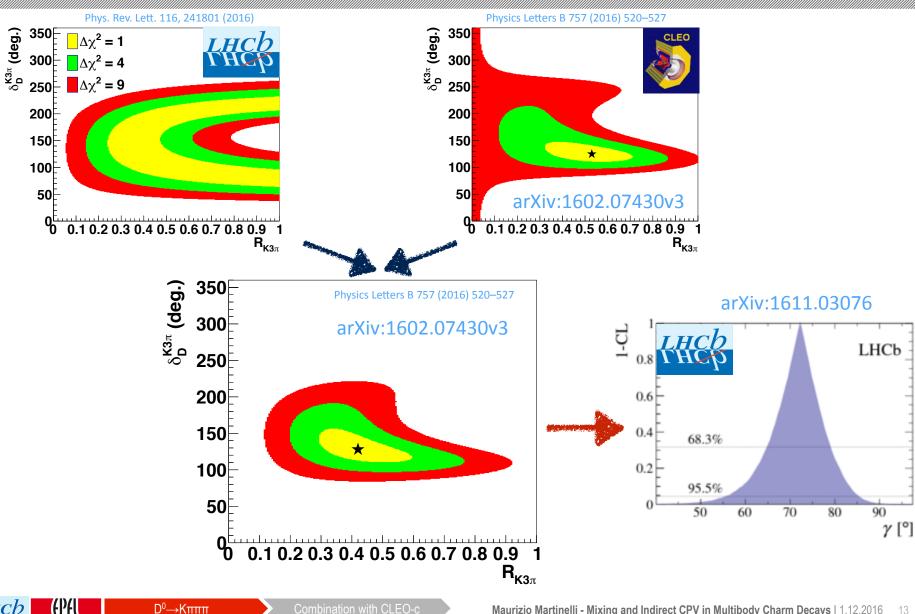
D⁰→Кππп


Fit Type	Parameter	Fit result	Correlation coefficient		
χ^2/ndf (p-value)			$r_D^{K3\pi}$	$R_D^{K3\pi} \cdot y'_{K3\pi}$	$rac{1}{4}(x^2+y^2)$
Unconstrained	$r_D^{K3\pi}$	$(5.67 \pm 0.12) imes 10^{-2}$	1	0.91	0.80
7.8/7 (0.35)	$R_D^{K3\pi} \cdot y'_{K3\pi}$	$(0.3 \pm 1.8) ~ imes 10^{-3}$		1	0.94
	$rac{1}{4}(x^2+y^2)$	$(4.8 \pm 1.8) \times 10^{-5}$			1

Fit

$D^0 \rightarrow K\pi\pi\pi$ - Coherence Factor

Phys. Rev. Lett. 116, 241801 (2016)



D⁰→Кπππ

Coherence Factor

Combination with CLEO-c

ÉCOLE POLYTECHNIQUE ÉDÉRALE DE LAUSANNE

JHEP 03 (2016) 033

$D^0 \rightarrow K^0_S \pi^+ \pi^-$ Mixing

Mixing and CPV in $D^0 \rightarrow K^0 {}_{s} \pi^+ \pi^-$

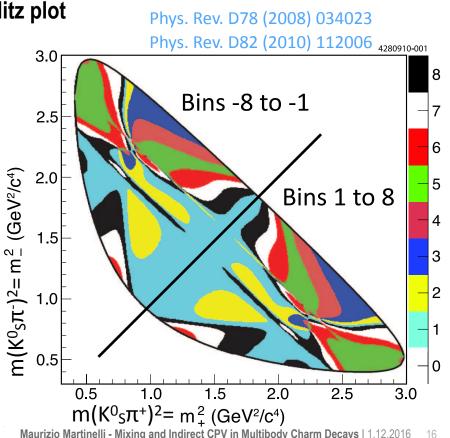
A Golden Mode for Mixing and CPV

- Both CF and DCS components are present in the same final state
- It gives direct access to all the mixing parameters
 x, y, q/p, arg(q/p)
- Thanks to the various contributions in the Dalitz plot, whose time dependance is modified by mixing parameters

All that Glitters is not Gold...

- Amplitude structure
- **Time dependance of the Amplitude structure** Time-dependent Dalitz-plot Analysis
- Presence of varying strong phases across the DP need to be treated with care It is fixed in two-body decays
- A time-dependent amplitude analysis approach has been pioneered by CLEO and later followed by BaBar and Belle
- At LHCb this approach is more challenging Run1 trigger has decay-time dependent selections → need to model that bias (Things should be better in Run2...)

$D^0 \rightarrow K^0 {}_{S} \pi^+ \pi^-$ - Model Independent Approach (I)


External Input

- In reality one does not need to know perfectly the Amplitude structure
- Just how the strong phases vary along the Dalitz plot
- External input can be used

Strong Phases Measurement

 $D^0 \rightarrow K^0 s \pi^+ \pi$

- Quantum coherence of D⁰-D
 ⁰ needed to separate D⁰ and D
 ⁰ decays
- Assuming an amplitude model as a reference, the difference of strong phase between bin -i and i is measured

$D^0 \rightarrow K^0 {}_{S} \pi^+ \pi^-$ - Model Independent Approach (II)

Formalism

• Fraction of events in a bin

$$T_i = \int_i |\mathcal{A}| dm_{12}^2 dm_{13}^2$$

Interference terms

$$c_{i} = \frac{1}{\sqrt{T_{i}T_{-i}}} \int_{i} |\mathcal{A}_{D^{0}}^{*}| |\mathcal{A}_{\overline{D}^{0}}| \cos \Delta \delta_{i} dm_{+}^{2} dm_{-}^{2}$$
$$s_{i} = \frac{1}{\sqrt{T_{i}T_{-i}}} \int_{i} |\mathcal{A}_{D^{0}}^{*}| |\mathcal{A}_{\overline{D}^{0}}| \sin \Delta \delta_{i} dm_{+}^{2} dm_{-}^{2}$$

• Time-dependent decay rate

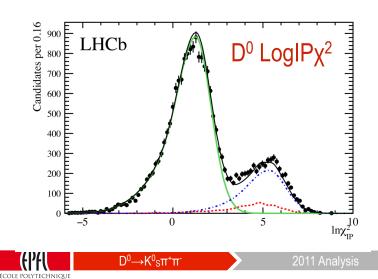
 $D^0 \rightarrow K^0 s \pi^+ \pi$

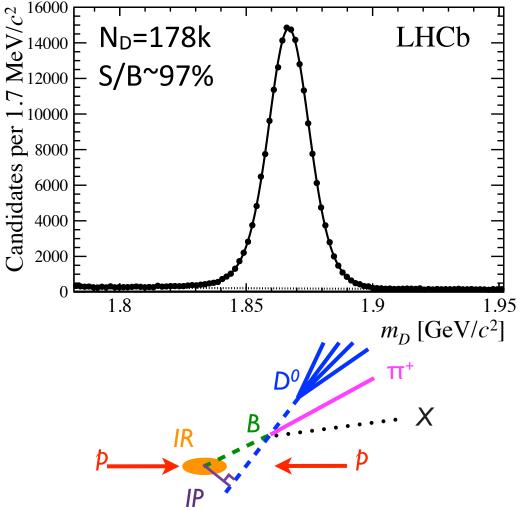
$$\mathcal{P}_{D^0}(i;t) \approx e^{\Gamma t} \left(T_i - \Gamma t \sqrt{T_i T_{-i}} (\mathbf{y} c_i + \mathbf{x} s_i) \right)$$
$$\mathcal{P}_{\overline{D}^0}(i;t) \approx e^{\Gamma t} \left(T_{-i} - \Gamma t \sqrt{T_i T_{-i}} (\mathbf{y} c_i - \mathbf{x} s_i) \right)$$

x, y can be measured from the decay-time distribution of events in the DP bins

JHEP 03 (2016) 033

¹JHEP 1204 (2012) 129


Dataset


- Prompt $D^{*+} \rightarrow D^0 \pi^+$ decays
- 2011 data: 1fb⁻¹

Challenges

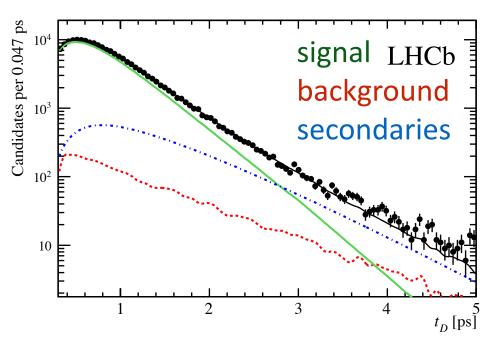
DÉRALE DE LAUSANNE

- **Per-event decay-time acceptance** Data-driven (swimming¹)
- Secondary (B→D^{*+}X) candidates rejection

WA (HFAG2016)

x = (0.46±0.15)% y = (0.62±0.08)%

Analysis


- The distributions of D⁰ mass, D⁰ LogIPχ² and D⁰ decay time are fit separately in various steps and finally simultaneously to measure the mixing parameter
- Systematic uncertainties studying by measuring the impact on final result
 - external input (T_i)
 - mass resolution
 - decay time resolution
 - combinatorial background

 $D^0 \rightarrow K^0 s \pi^+ \pi$

COLE POLYTECHNIOU

- efficiency over PS
- per-event decay time acceptance

$$x = (-0.86 \pm 0.53 \pm 0.17) \times 10^{-2}$$

$$y = (+0.03 \pm 0.46 \pm 0.13) \times 10^{-2}$$

Synergy with BESIII

External Inputs

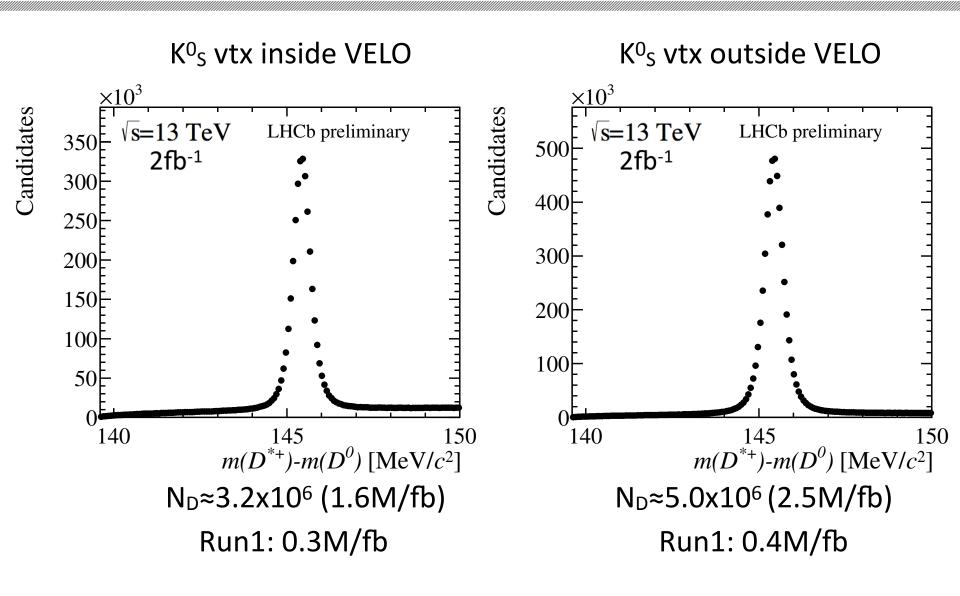
- Quantum coherence of $D^{0}-\overline{D}^{0}$ mesons produced at c factories allows complementary measurements to LHCb
- A proposal is out describing where branching fraction and strong phases measurements could help (LHCb-PUB-2016-025)
- Focused on the determination of γ at • LHCb, but applies also to mixing and **CPV** in Charm

Synergy of BESIII and LHCb physics programmes

LHCb Collaboration

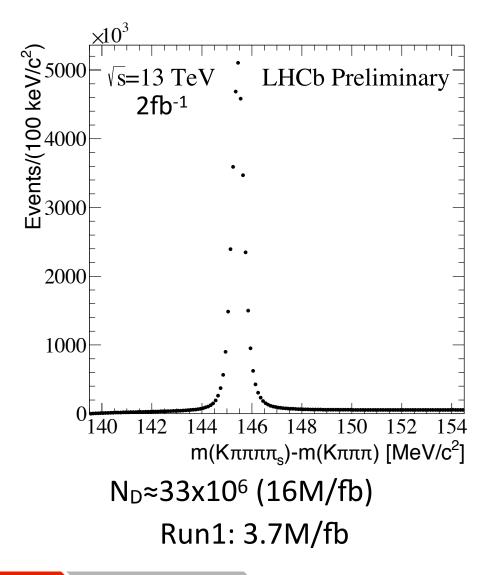
October 11, 2016

Much Larger Yields


- cc cross-section almost doubled
- Extensive work during LS1 on Charm triggers (Turbo) Larger efficiency Improved acceptance
- Online Alignment and Calibration

Alternative Techniques

- Amplitude analyses in Charm are gaining momentum
- Useful for measuring Mixing and CPV


$D^0 \rightarrow K^0 s \pi^+ \pi^- Run2$ Preview

 $D^0 \rightarrow K^0 s \pi^+ \pi^-$

$D^0 \rightarrow K\pi\pi\pi$ Run2 Preview

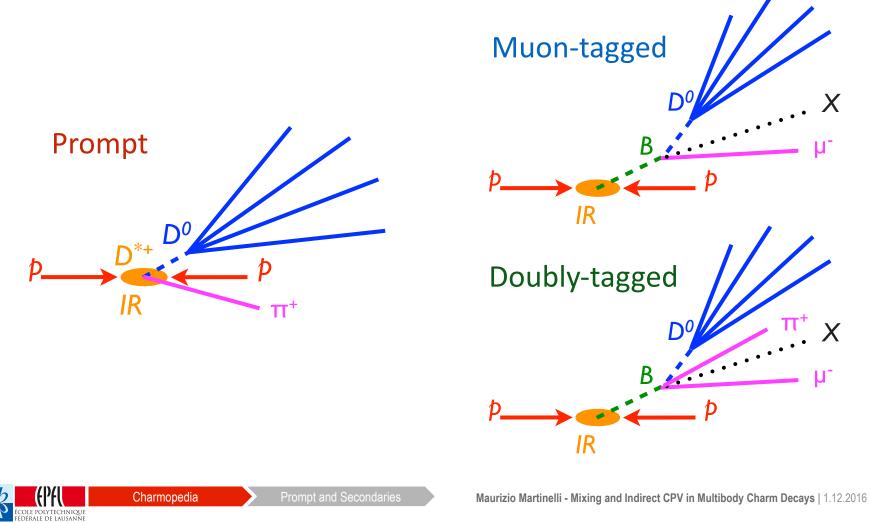
Summary

Just Started

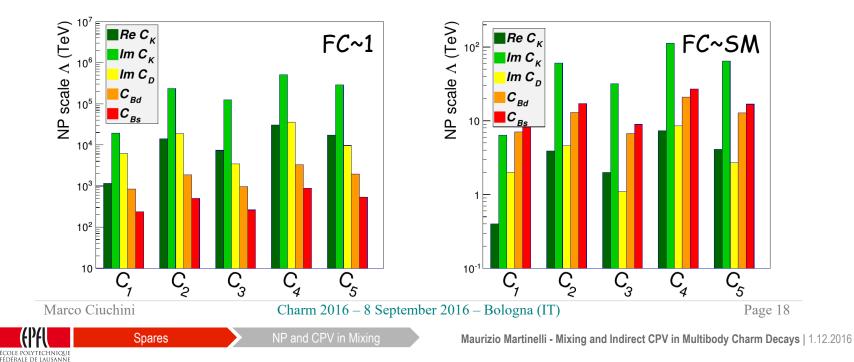
- The study of Mixing and CPV in Charm multi-body decays at LHCb has just started
- Many more analysis are in the pipeline
- More experience with the detector will favour amplitude analyses

The Best is Yet to Come

- Run2 data are very promising
- Improved trigger provides us unprecedented yields of Charm decays



Prompt and Secondary Decays


Two Ways of Selecting and Tagging Charm Hadrons at LHCb

• Charm hadrons can be promptly produced in pp collisions or as product of B decays

New Physics and Indirect CPV in Charm

$D^0 \longrightarrow K^0{}_S \pi^+\pi^- \ 2011 \ Systematic \ Uncertainties$

Table 1: Systematic uncertainties on x and y. The statistical uncertainties, which include the uncertainties associated with the CLEO parameters (c_i, s_i) , are shown for comparison.

Source	$x (imes 10^{-2})$	$y\left(imes 10^{-2} ight)$
Fit bias	0.021	0.020
Decay time resolution	0.065	0.039
Turning point (TP) resolution	0.020	0.022
Invariant mass resolution	0.073	0.028
Prompt/secondary TP distributions	0.051	0.023
Efficiency over phase space	0.057	0.071
Tracking efficiency parameterisation	0.015	0.025
Kinematic boundary	0.012	0.006
Combinatorial background	0.061	0.052
Treatment of secondary D decays	0.046	0.025
Uncertainty from T_i	0.079	0.056
Uncertainties from $(m_D, \Delta m)$ fits	0.000	0.000
Uncertainties from lifetime fit	0.020	0.043
D^0 background	0.001	0.006
Variation of signal components across the phase space	0.013	0.017
Total systematic uncertainty	0.171	0.134
Statistical uncertainty	0.527	0.463

Spares