

Charm Time-dependent CPV and Mixing at Belle II

IXth International Workshop on the CKM Unitarity Triangle Tata Institute of Fundamental Research Mumbai, India 1 December 2016

- motivation
- $upgrading Belle/KEKB \rightarrow Super B Factory$
- decay time resolution
- 2-body decays
- *multi-body decays*
- detector status and schedule

Why an e⁺e⁻ Machine for Charm Physics?

- Low backgrounds, high trigger efficiency, excellent γ and π⁰ recontruction (and thus η, η', ρ⁺, etc. reconstruction), high flavor-tagging efficiency with low dilution, many control samples to study systematics
- Due to low backgrounds, negligible trigger bias, and good kinematic resolutions, Dalitz plots analyses are straightforward. Absolute branching fractions can be measured. Missing energy and missing mass analyses are straightforward.
- systematics quite different from those at LHCb. If true NP is seen by one of the experiments, confirmation by the other would be important.
- Belle II goal: to increase the sampe sizes over what Belle achieved by a factor of 50 (>4 x 10¹⁰ BB pairs)

2

A. J. Schwartz CKM 2016, TIFR, Mumbai, India

KEKB → *SuperKEKB* (nano-beam)

Pixel detector:

	Inner layer (L1)	Outer layer (L2)
# modules	2 x 8	2 x 12
distance from IP (cm)	1.4	2.2
thickness (µm)	75	75
total # pixels	3.072 x 10 ⁶	4.608 x 10 ⁶
pixel size (µm²)	55, 60 x 50	70, 85 x 50
sensitive area (mm ²)	44.8 x 12.5	61.44 x 12.5

		readout	readout	strip pitch	strip pitch
layer	type	strip(p/r-φ)	strip(n/z)	(p/r-φ)	(n/z)
4,5,6	Large	768	512	75 µm	240 µm
4,5,6 forward	Trapezoidal	768	512	50-75 µm	240 µm
3	Small	768	768	50 µm	160 µm

A. J. Schwartz.

CKM 2016, TIFR, Mumbai, India

Belle II TDCPV/Mixing

BelleII MC PRELIMINARY

Resolution on track impact parameter w/r/t interaction point (IP):

A. J. Schwartz

CKM 2016, TIFR, Mumbai, India

$D^0 \rightarrow K^+K^-$ Decay Time Resolution (D* tag)

A. J. Schwartz

CKM 2016, TIFR, Mumbai, India

Belle II TDCPV/Mixing

$$t = rac{\ell}{eta \gamma c} = rac{\ell}{c} rac{m_D}{|ec{p}|}$$

$$e^+e^- \rightarrow \overline{D}{}^0D^0$$
,
 $D^0 \rightarrow K^+K^-$

decay time resolution of prompt D⁰ = 0.15 ps (also excellent)

$\underset{\text{Belle II}}{\longrightarrow} Mixing/CPV \ precision \ for \ D^0 \rightarrow K^+\pi$

- generate $D^0 \rightarrow K^+ \pi$ decays with mixing (study II: + CPV)
- smear decay time according to resolution $\sigma = 0.14 \text{ ps}$
- generate and fit ensembles of 1000 experiments corresponding to 5, 20, 50 ab⁻¹ of data)

Toy MC study #1: no CPV

- fit decay time distribution for R_D, x², y
- use same PDF for *D*⁰ and *D*⁰bar (convolved with Gaussian resolution function)

$$\left| { {dN(D^0
ightarrow f)}\over {dt}} ~\propto~ e^{-\overline{\Gamma}\,t} ~ \left\{ R_D ~+~ \sqrt{R_D}\,y'(\overline{\Gamma}t) ~+~ {(x'^2+y'^2)\over 4}(\overline{\Gamma}\,t)^2
ight\}$$

Toy MC study #2: include CPV

- fit decay time distribution for R_D, x', y', |q/p|, φ (note: sensitive to sign of x)
- use different PDFs for *D*⁰ and *D*⁰bar (convolved with the same Gaussian resolution function)

$$\begin{split} D^{0}(t) \propto \quad \left\{ \left| R_{D} + \left| \frac{q}{p} \right| \sqrt{R_{D}} (y' \cos \phi - x' \sin \phi) (\overline{\Gamma}t) + \left| \frac{q}{p} \right|^{2} \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma}t)^{2} \right\} \\ \overline{D^{0}}(t) \propto \quad \left\{ \overline{R}_{D} + \left| \frac{p}{q} \right| \sqrt{\overline{R}_{D}} (y' \cos \phi + x' \sin \phi) (\overline{\Gamma}t) + \left| \frac{p}{q} \right|^{2} \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma}t)^{2} \right\} \end{split}$$

Q

A. J. Schwartz CKM 2016, TIFR, Mumbai, India

Effect upon Mixing and CPV Precision

Toy MC no CPV results (preliminary):

	5 ab ⁻¹	20 ab ⁻¹	50 ab ⁻¹
x ² (x 10 ⁻⁵) x ² (%)	14.4 0.72	2 7.0 0.35	4.4 0.22
y' (%)	0.156	0.075	0.047

LHCb 3 fb⁻¹ 4.3 0.08 competitive for y'?

Toy MC allowing for CPV results (preliminary):

	5 ab ⁻¹	20 ab ⁻¹	50 ab ⁻¹
x' (%)	0.37	0.23	0.15
y' (%)	0.26	0.17	0.10
<i>q/p</i>	0.197	0.089	0.051
φ (deg)	15.5	9.2	5.7

A. J. Schwartz

CKM 2016, TIFR, Mumbai, India

Peng et al., PRD 89, 091103(R) (2014)

Fitting the time-dependent Dalitz plot yields x, y, |q/p| and $\phi = Arg(q/p)$

- 976 fb⁻¹, full data set
- Signal yield determined from 2-dim. fit to $M_{K\pi\pi}$ and $\Delta M = M_{K\pi\pi\pi} - M_{K\pi\pi}$. Yield is 1.2 x 10⁶ events with a purity of 96%.
- Select events in signal region $|M_{K\pi\pi} - M_D| < 15 \text{ MeV/c}^2$ and $\Delta M = (5.75, 5.95) \text{ MeV}.$
- For events in signal region, do unbinned ML fit to m⁺ = M (Kπ⁺)², m⁻ = M(Kπ⁻)², and decay time t. Fit parameters are x, y, τ, resolution function parameters (2-3 Gaussians), and decay model: magnitudes and phases of 13 intermediate resonances.
- Do fit separately (+ simultaneously) for D⁰ and D⁰bar samples to obtain |q/p|, φ parameters.

$$egin{aligned} R_{D^0} &= \; rac{e^{-\Gamma t}}{2} \left\{ \left(|\mathcal{A}_f|^2 + \left| rac{q}{p}
ight|^2 |\overline{\mathcal{A}}_f|^2
ight) \cosh(yt) + \left(|\mathcal{A}_f|^2 - \left| rac{q}{p}
ight|^2 |\overline{\mathcal{A}}_f|^2
ight) \cos(xt) \ &+ \; 2 \mathrm{Re} \left(rac{q}{p} \overline{\mathcal{A}}_f \mathcal{A}_f^*
ight) \sinh(yt) - 2 \mathrm{Im} \left(rac{q}{p} \overline{\mathcal{A}}_f \mathcal{A}_f^*
ight) \sin(xt)
ight\} \end{aligned}$$

$$egin{aligned} R_{\overline{D}{}^0} &= \; rac{e^{-\Gamma t}}{2} \left\{ \left(|\overline{\mathcal{A}}_f|^2 + \left| rac{p}{q}
ight|^2 |\mathcal{A}_f|^2
ight) \cosh(yt) + \left(|\overline{\mathcal{A}}_f|^2 - \left| rac{p}{q}
ight|^2 |\mathcal{A}_f|^2
ight) \cos(xt) \ &+ 2 ext{Re} \left(rac{p}{q} \mathcal{A}_f \overline{\mathcal{A}}_f^{\,*}
ight) \sinh(yt) - 2 ext{Im} \left(rac{p}{q} \mathcal{A}_f \overline{\mathcal{A}}_f^{\,*}
ight) \sin(xt)
ight\} \end{aligned}$$

If no
$$CPV:~\mathcal{A}_f(m_+^2,m_-^2)=\overline{\mathcal{A}}_f(m_-^2,m_+^2)$$

A. J. Schwartz CKM 2016, TIFR, Mumbai, India

5 $D^0(t) \rightarrow K_S \pi^+ \pi^-$: time-dependent Dalitz plot fit Belle 11

Resonance	Amplitude	Phase (deg)	Fit fraction
$K^{*}(892)^{-}$	1.590 ± 0.003	131.8 ± 0.2	0.6045
$K_0^*(1430)^-$	2.059 ± 0.010	-194.6 ± 1.7	0.0702
$K_2^*(1430)^-$	1.150 ± 0.009	-41.5 ± 0.4	0.0221
$K^{*}(1410)^{-}$	0.496 ± 0.011	83.4 ± 0.9	0.0026
$K^{*}(1680)^{-}$	1.556 ± 0.097	-83.2 ± 1.2	0.0016
$K^{*}(892)^{+}$	0.139 ± 0.002	-42.1 ± 0.7	0.0046
$K_0^*(1430)^+$	0.176 ± 0.007	-102.3 ± 2.1	0.0005
$K_2^*(1430)^+$	0.077 ± 0.007	-32.2 ± 4.7	0.0001
$K^{*}(1410)^{+}$	0.248 ± 0.010	-145.7 ± 2.9	0.0007
$K^*(1680)^+$	1.407 ± 0.053	86.1 ± 2.7	0.0013
$\rho(770)$	1 (fixed)	0 (fixed)	0.2000
$\omega(782)$	0.0370 ± 0.0004	114.9 ± 0.6	0.0057
$f_2(1270)$	1.300 ± 0.013	-31.6 ± 0.5	0.0141
$ \rho(1450) $	0.532 ± 0.027	80.8 ± 2.1	0.0012

Resonance	Amplitude	Phase (deg
$\pi\pi$ S-wave		
β_1	4.23 ± 0.02	164.0 ± 0.2
β_2	10.90 ± 0.02	15.6 ± 0.2
β_3	37.4 ± 0.3	3.3 ± 0.4
β_4	14.7 ± 0.1	-8.9 ± 0.3
f_{11}^{prod}	12.76 ± 0.05	$-161.1 \pm 0.$
f_{12}^{prod}	14.2 ± 0.2	$-176.2 \pm 0.$
f_{13}^{prod}	10.0 ± 0.5	$-124.7 \pm 2.$
$K\pi$ S-wave	Parameters	
$M(MeV/c^2)$	1461.7 ± 0.8	
$\Gamma({ m MeV}/c^2)$	268.3 ± 1.1	
F	0.4524 ± 0.005	
$\phi_F(rad)$	0.248 ± 0.003	
R	1(fixed)	

Fit projections: (fitted function describes the data well)

A. J. Schwartz

Mixing/CPV Precision for $D^0 \rightarrow K_S \pi^+ \pi^-$ Belle 1

	Observable	Statistical	Syste	ematic	Total	$\sigma_{ m Belle~II} \!=\! \sqrt{(\sigma_{ m stat}^2+\sigma_{ m s}^2)}$	$(\mathcal{L}_{ ext{yst}}) \cdot rac{\mathcal{L}_{ ext{Belle}}}{50 ext{ ab}^{-1}} + \sigma_{ ext{irred}}^2$
			red.	irred.			
	$x^{K_S \pi^+ \pi^-} \; [10^{-2}]$					(arXiv:1208.3355)	(JHEP 1604, 033
X	$976 \ {\rm fb}^{-1}$	0.19	0.06	0.11	0.20	, , , , , ,	
	50 ab^{-1}	0.03	0.01	0.11	0.11	0.2	0.6
a. /.a	$ q/p ^{K_S \pi^+ \pi^-} [10^{-2}]$						
<i>q/p</i>	$976 \ {\rm fb}^{-1}$	15.5	5.2 - 5.6	7.0-6.7	17.8		
	50 ab^{-1}	2.2	0.7-0.8	7.0-6.7	7.0-7.4	20	-
V	$y^{K_S\pi^+\pi^-}~[10^{-2}]$						
J	$976 \ {\rm fb}^{-1}$	0.15	0.06	0.04	0.16		
	50 ab^{-1}	0.02	0.01	0.04	0.05	0.2	0.5
ϕ	$\phi^{K_S\pi^+\pi^-}$ [°]						
	$976 \ {\rm fb}^{-1}$	10.7	4.4-4.5	3.8-3.7	12.2		
	$50 { m ~ab^{-1}}$	1.5	0.6	3.8-3.7	4.0-4.2	15	-

- irreducible systematics related to Dalitz plot model; this will improve with model-independent approach (using BESIII binned phases)
- improvement in proper time resolution not included here

A. J. Schwartz, CKM 2016, TIFR, Mumbai, India

13 **Belle II TDCPV/Mixing**

033)

Earlier Estimated Uncertaintes (M. Staric, KEK FFW14):

Analysis	Observable	Uncertai		
		Now (~1 ab^{-1})	$\mathcal{L}=50~\mathrm{ab}^{-1}$	
$K^0_S\pi^+\pi^-$	$oldsymbol{x}$	0.21	0.08	
	$oldsymbol{y}$	0.17	0.05	NOTE: does
	q/p	18	6	not include
	ϕ	0.21 rad	(4°) 0.07 rad	in decay time
$\pi^+\pi^-,K^+K^-$	y_{CP}	0.25	0.04	resolution
	A_{Γ}	0.22	0.03	
$K^+\pi^-$	x'^2	0.025	0.003	
	y'	0.45	0.04	
	q/p	0.6	0.06	
	ϕ	0.44 (2	2.2°)0.04 rad	

Note: statistical error and some systematics scale by luminosity, but other systematics do not.

A. J. Schwartz CKM 2016, TIFR, Mumbai, India

$\bigcup_{Bolle II} Mixing Constraints in the D⁰-\overline{D}⁰ system$

Inserting these errors for y_{CP} , A_{Γ} , x^{2} , y', and $K_{S}\pi^{+}\pi$ observables into the HFAG global fit:

 $\Re_{>1.5}$ (*x*, *y*) = (0.8, 0.7) CPV allowed Belle II 50 ab⁻¹ (%) A IFAG-charm CPV allowed 1.2 CKM 2016 0.8 0.6 0.5 0.4 0.2 0 0 1σ 1σ -0.2 2σ 2 σ 3σ 3σ -0.4 4σ 4 σ -0.55σ 5σ -0.6 -0.50.5 1.5 -0.6 -0.4 -0.2 0 0 0.2 0.4 0.6 0.8 1.2 1 x (%) x (%)

50 ab⁻¹:

Current measurements of x, y give many constraints on NP models [see Golowich et al., PRD76, 095009 (2007); 21 models considered, e.g., 2-Higgs doublets, leftright models, little Higgs, extra dimensions, of which 17 give constraints]

A. J. Schwartz CKM 2016, TIFR, Mumbai, India

Belle II TDCPV/Mixing

$\frac{1}{D^{0}} CPV Constraints in the D^{0} - \overline{D}^{0} system$

Now:

50 ab⁻¹:

Note: LHCb will dominate most of these measurements, but Belle II should be competitive in y_{CP} and possibly in x'^2 , y', |q/p|, ϕ (see Staric, KEK FFW14). If LHCb sees new physics, it would be important for Belle II to independently confirm.

A. J. Schwartz CKM 2016, TIFR, Mumbai, India

$\underset{\text{Belle II}}{\longrightarrow} Mixing/CPV Precision for D^0 \rightarrow K^+ \pi \pi^0$

Fig. 1. WS decay(left) through the DCS process and the mixing followed by CF process, and RS decay(right) through the CF process and the mixing followed by DCS process.

$$egin{array}{rcl} x'' &=& x \cdot \cos \delta_{K\pi\pi^0} + y \cdot \sin \delta_{K\pi\pi^0}, & \mathcal{A}_{ar{f}}(m_{K^+\pi^-}^2,m_{\pi^-\pi^0}^2) &=& r_0 \cdot \mathcal{A}_{ar{f}}^{DCS}(m_{K^+\pi^-}^2,m_{\pi^-\pi^0}^2), \ y'' &=& y \cdot \cos \delta_{K\pi\pi^0} - x \cdot \sin \delta_{K\pi\pi^0} & ar{\mathcal{A}}_{ar{f}}(m_{K^+\pi^-}^2,m_{\pi^-\pi^0}^2) &=& ar{\mathcal{A}}_{ar{f}}^{CF}(m_{K^+\pi^-}^2,m_{\pi^-\pi^0}^2). \end{array}$$

$$\begin{split} |\mathcal{M}(\bar{f},t)|^{2} &= e^{-\Gamma t} \left\{ r_{0}^{2} \cdot |\mathcal{A}_{\bar{f}}^{DCS}|^{2} + \frac{{x''}^{2} + {y''}^{2}}{4} |\bar{\mathcal{A}}_{\bar{f}}^{CF}|^{2} (\Gamma t)^{2} - r_{0} \cdot [y'' \operatorname{Re}(\mathcal{A}_{\bar{f}}^{DCS} \bar{\mathcal{A}}^{*}{}_{\bar{f}}^{CF}) + x'' \operatorname{Im}(\mathcal{A}_{\bar{f}}^{DCS} \bar{\mathcal{A}}^{*}{}_{\bar{f}}^{CF})] \cdot \Gamma t \right\} \\ |\mathcal{M}(\bar{f},t)|^{2} &= \underbrace{\left(\mathcal{M}_{\bar{f}}^{DCS}|^{2}\right) e^{-\Gamma t} \otimes_{t} \operatorname{Res}(t) + \frac{{x''}^{2} + {y''}^{2}}{4} \left(|\bar{\mathcal{M}}_{\bar{f}}^{CF}|^{2} \right)^{1}_{T_{0}^{2}} \cdot (\Gamma^{2} t^{2} \cdot e^{-\Gamma t}) \otimes_{t} \operatorname{Res}(t) \\ &- \frac{1}{r_{0}} \cdot (y'' \cdot \Re[\mathcal{M}_{\bar{f}}^{DCS} \bar{\mathcal{M}}^{*}{}_{\bar{f}}^{CF}] - x'' \cdot \Im[\mathcal{M}_{\bar{f}}^{DCS} \bar{\mathcal{M}}^{*}{}_{\bar{f}}^{CF}]) (\Gamma t \cdot e^{-\Gamma t}) \otimes_{t} \operatorname{Res}(t) \end{split}$$

A. J. Schwartz CKM

CKM 2016, TIFR, Mumbai, India

$\underset{\text{Belle II}}{\longrightarrow} Mixing/CPV Precision for D^0 \rightarrow K^+ \pi \pi^0$

[Longki Li, USTC] Monte Carlo study with 140 fs decay time resolution:

A. J. Schwartz

CKM 2016, TIFR, Mumbai, India

Accelerator completed, now circulating beams:

A. J. Schwartz CKM 2016, TIFR, Mumbai, India

iTOP optics assembly and installation completed

Belle II TDCPV/Mixing

iTOP optics assembly and installation completed: (16 modules)

A. J. Schwartz

CKM 2016, TIFR, Mumbai, India

Pacific Northwest

Proudly Operated by Battelle Since 1965

Phase 1:

- accelerator commissioning (now complete)
- no detector (under assembly)

Phase 2 (late 2017):

- first collisions
- partial detector
- background study

Phase 3 (late 2018):

- full detector (pixels in)
- first physics data run

CKM 2016, TIFR, Mumbai, India

• *B* factories have proven to be an excellent tool for charm physics, producing a wealth of physics results, having reliable long-term operation, and having constant improvement of performance.

• Major upgrade at KEK in 2010-16 \rightarrow Super B factory: $\mathcal{L} \times 40 \Rightarrow 50 \text{ ab}^{-1}$. Essentially a new experiment, most detector components and electronics are replaced.

• Belle II will have a rich <u>charm</u> physics program: it should improve precision of mixing/CPV parameters, direct CP asymmetries, precision of V_{cd} , V_{cs} from semileptonic decays, decay constants f_D , f_{Ds} , measurements of charm baryons, much lower limits on rare and forbidden decays, etc. Many final states studied (e.g., those with lepton-v, π^0 , η , η' , etc.) will be complementary to those studied at LHCb.

• Due to upgraded vertex detector (with **pixels**), charm decay time resolution is **~half** of Belle/Babar value. This notably improves the precision of mixing/CPV parameters.

• Detector is now mostly installed, will be completed and fully commissioned in 2017, with first data in 2018.

A. J. Schwartz CKM 2016, TIFR, Mumbai, India

How to achieve L~10³⁶? Super-KEKB

	Two options considered:	l (current) (amps)	β _y (mm)	Ę	
	KEKB achieved	1.8/1.45	6.5/5.9	0.11/0.06	
	High current	9.4/4.1	3/6	0.3/0.51	
chosen	Nano-beam (Raimondi for SuperB)	3.6/2.6	0.27/0.30	0.09/0.08	

beam size: $100 \ \mu m(H) \ x \ 2 \ \mu m(V) \rightarrow 10 \ \mu m(H) \ x \ 59 \ nm(V)$

A. J. Schwartz

CKM 2016, TIFR, Mumbai, India

Belle II TDCPV/Mixing

A. J. Schwartz

CKM 2016, TIFR, Mumbai, India

Belle II TDCPV/Mixing