Penguin pollution in β and β_s

Ulrich Nierste

Karlsruhe Institute of Technology Institute for Theoretical Particle Physics

9th International Workshop on the CKM Unitarity Triangle (CKM2016) Mumbai. 29 November 2016

Ulrich Nierste (TTP) 29 Nov 2016 1 / 25

B decays to charmonium

Summary

Ulrich Nierste (TTP) 29 Nov 2016 2 / 25

B decays to charmonium

Time-dependent CP asymmetries (for q = d or s):

$$\begin{split} A_{\mathrm{CP}}^{B_q \to f}(t) &= \\ \frac{S_f \sin(\Delta m_q t) - C_f \cos(\Delta m_q t)}{\cosh(\Delta \Gamma_q t/2) + A_{\Delta \Gamma_q}^f \sinh(\Delta \Gamma_q t/2)} \end{split}$$

 Δm_q : mass difference $\Delta \Gamma_q$: width difference

3/25

The coefficients S_f , C_f , and $A^f_{\Delta\Gamma_q}$ encode the information on the decay amplitudes $A_f \equiv A(B_q \to f)$ and $\overline{A}_f \equiv A(\overline{B}_q \to \overline{f})$.

Golden mode: *B* decay into a CP eigenstate $f = f_{CP}$ which only involves a single CKM factor ($\Rightarrow |A_{f_{CP}}| = |\overline{A}_{f_{CP}}|$ and $|\lambda_f| = 1$).

$$\mathit{CP}|\mathit{f}_{\mathrm{CP}}\rangle = \eta_{\mathit{f}_{\mathrm{CP}}}|\mathit{f}_{\mathrm{CP}}\rangle \qquad \text{with } \eta_{\mathit{f}_{\mathrm{CP}}} = \pm 1.$$

Time-dependent CP asymmetry:

$$a_{f_{\mathrm{CP}}}(t) = -rac{\mathrm{Im}\,\lambda_f\sin(\Delta m_q t)}{\cosh(\Delta\Gamma_q t/2) - \mathrm{Re}\,\lambda_f\sinh(\Delta\Gamma_q t/2)},$$

 $\operatorname{Im} \lambda_f$ quantifies the CP violation in the interference between mixing and decay:

Ulrich Nierste (TTP) 29 Nov 2016

Example 1:

$$B_d \rightarrow J/\psi K_S$$
 \Rightarrow $|\bar{f}\rangle = -|f\rangle$ (CP-odd eigenstate)

$$a_{J/\psi K_S}(t) \simeq -\sin(2\beta)\sin(\Delta m_d t),$$

where

$$\beta = \arg \left[-\frac{V_{cd} V_{cb}^*}{V_{td} V_{tb}^*} \right]$$

golden mode to measure the angle β of the unitarity triangle

Ulrich Nierste (TTP) 29 Nov 2016

Example 2:

$$B_s \rightarrow (J/\psi \phi)_{L=0} \qquad \Rightarrow \qquad |\overline{f}\rangle = |f\rangle$$
 (CP-even eigenstate)

$$a_{(J/\psi\phi)_{L=0}}(t) = -\frac{\sin(2\beta_s)\sin(\Delta m_s t)}{\cosh(\Delta\Gamma_s t/2) - \cos(2\beta_s)\sinh(\Delta\Gamma_s t/2)},$$
 where
$$\beta_s = \arg\left[-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{t}^*}\right] \simeq \lambda^2\overline{\eta}$$

Ulrich Nierste (TTP) 29 Nov 2016

Penguin pollution in $b o c\overline{c}s$ decays

The decay amplitudes $A(B_{d,s} \to J/\psi X)$ are dominated by the CKM structure $V_{cb} V_{cs}^*$, but have a small contribution with $V_{ub} V_{us}^*$, called penguin pollution.

How golden are these modes?

Experimental world average:

$$S_{J/\psi K_S} = 0.665 \pm 0.024$$

Averaging all charmonia and including final states with K_L gives

$$\sin(2\beta) = 0.679 \pm 0.020$$
, HFAG winter 2015

...if the penguin pollution is set to zero.

Ulrich Nierste (TTP) 29 Nov 2016 7 / 25

Penguin pollution in $b \to c\overline{c}s$ decays

$$S(B_q \to f) = \sin(\phi_q + \Delta\phi_q)$$

If one neglects $\lambda_u = V_{ub} V_{us}^*$ in the decay amplitude, $S(B_q \to f)$ measures ϕ_q with

$$B_d \rightarrow J/\psi K^0$$
: $\phi_d = 2\beta$
 $B_s \rightarrow J/\psi \phi$: $\phi_s = -2\beta_s$

The penguin pollution $\Delta \phi_q$ is parametrically suppressed by

$$\epsilon \equiv \left| \frac{V_{us} V_{ub}}{V_{cs} V_{cb}} \right| = 0.02.$$

New method to constrain $\Delta \phi_q$:

Ph. Frings, UN, M. Wiebusch, Phys.Rev.Lett. 115 (2015) 061802, 1503.00859

8 / 25

Overview: Experimental and Theoretical Precision

$$\Delta \mathcal{S}_{J/\psi K^0} = \mathcal{S}_{J/\psi K^0} - \sin \phi_d$$
 $\mathcal{S}_{J/\psi K^0} = \sin \left(\phi_d + \Delta \phi_d\right)$

HFAG 2014:

$$\sigma_{\mathcal{S}_{J/\psi K^0}} = 0.02$$
 $\sigma_{\phi_d} = 1.5^\circ$

Author	$\Delta \mathcal{S}_{J/\psi \mathcal{K}^0}$	$\Delta\phi_{d}$	Method
De Bruyn, Fleischer 2014	-0.01 ± 0.01	$-\left(1.1^{\circ}^{+0.70}_{-0.85}\right)^{\circ}$	SU(3) flavour
Jung 2012	$ \Delta \mathcal{S} \lesssim 0.01$	$ \Delta\phi_d \lesssim 0.8^\circ$	SU(3) flavour
Ciuchini et al. 2011	$\textbf{0.00} \pm \textbf{0.02}$	$0.0^{\circ}\pm1.6^{\circ}$	U-spin
Faller et al. 2009	[-0.05, -0.01]	$[-3.9, -0.8]^{\circ}$	U-spin
Boos et al. 2004	$-(2\pm 2)\cdot 10^{-4}$	$0.0^{\circ}\pm0.0^{\circ}$	perturbative
			calculation

Ulrich Nierste (TTP) 29 Nov 2016

SU(3)

Extract penguin contribution from $b \to c\overline{c}d$ control channels such as $B_d \to J/\psi \pi^0$ or $B_s \to J/\psi K_S$, in which the penguin contribution is Cabibbo-unsuppressed.

Drawbacks:

- statistics in control channels smaller by factor of 20
- size of SU(3) breaking in penguin contributions to $B_{d,s} \to J/\psi X$ decays unclear

SU(3) breaking can be large, e.g. a **b** quark fragments into a B_d four times more often than into a B_s .

Ulrich Nierste (TTP) 29 Nov 2016 10 / 25

SU(3)

Extract penguin contribution from $b \to c\overline{c}d$ control channels such as $B_d \to J/\psi \pi^0$ or $B_s \to J/\psi K_S$, in which the penguin contribution is Cabibbo-unsuppressed.

Drawbacks:

- statistics in control channels smaller by factor of 20
- size of SU(3) breaking in penguin contributions to $B_{d,s} \to J/\psi X$ decays unclear

SU(3) breaking can be large, e.g. a **b** quark fragments into a B_d four times more often than into a B_s .

• SU(3) does not help in $B_s \to J/\psi \phi$, because ϕ is an equal mixture of octet and singlet.

Ulrich Nierste (TTP) 29 Nov 2016 10 / 25

Tree and Penguin

Define $\lambda_q = V_{qb}V_{qs}^*$ and use $\lambda_t = -\lambda_u - \lambda_c$.

Generic B decay amplitude:

$$A(B \rightarrow f) = \lambda_c t_f + \lambda_u p_f$$

Terms $\propto \lambda_u = V_{ub} V_{us}^*$ lead to the penguin pollution.

Remark: One can include first-order SU(3) breaking in the extraction of t_f from control channels (Jung 2012).

This is not possible for p_f .

Ulrich Nierste (TTP) 29 Nov 2016 11 / 25

What contributes to the penguin pollution p_f ?

Penguin operators:

$$\langle f | \sum_{i=3}^{6} C_i Q_i | B \rangle \approx C_8^t \langle f | Q_{8V} | B \rangle$$

with

$$C_8^t \equiv 2(C_4 + C_6)$$

$$Q_{8V} \equiv (\bar{s}T^ab)_{V-A}(\bar{c}T^ac)_V$$

Tree-level operator insertion:

$$\langle f|C_0Q_0^u+C_8Q_8^u|B\rangle$$

12 / 25

Feared and respected: the up-quark loop

Idea: employ an operator product expansion,

to factorise the *u*-quark loop into a perturbative coefficient and matrix elements of local operators:

$$Q_{8V} = (\bar{s}T^ab)_{V-A}(\bar{c}T^ac)_V$$

13 / 25

Is this Bander Soni Silverman?

Perturbative approach is due to Bander Soni Silverman (1979) (BSS). Boos, Mannel and Reuter (2004) applied this method to $B_d \to J/\psi K_S$. Our study:

- Investigate soft and collinear infrared divergences to prove factorization.
- Analyse spectator scattering.
- Organise matrix elements by 1/N_c counting, no further assumptions on magnitudes and strong phases.

Ulrich Nierste (TTP) 29 Nov 2016 14 / 25

Infrared Structure - Collinear Divergences

Collinear divergent diagrams

are infrared-safe if summed over

or are individually infrared-safe if considered in a physical gauge.

Ulrich Nierste (TTP) 29 Nov 2016 15 / 25

Infrared Structure - Soft Divergences

Soft divergent diagrams ...

... factorise.

16 / 25

Infrared Structure - Spectator Scattering

Spectator scattering diagrams...

Ulrich Nierste (TTP) 29 Nov 2016 17 / 25

Operator product expansion works!

- Soft divergences factorise.
- Collinear divergences cancel or factorise.
- Non-factorisable spectator scattering is power-suppressed.
 - \Rightarrow Up-quark penguin can be absorbed into a Wilson coefficient C_8^{ν} !

Local operators:

$$\begin{array}{lll} Q_{0\,V} & \equiv & (\bar{s}b)_{V-A}(\bar{c}c)_{V} & Q_{0A} & \equiv & (\bar{s}b)_{V-A}(\bar{c}c)_{A} \\ Q_{8\,V} & \equiv & (\bar{s}T^{a}b)_{V-A}(\bar{c}T^{a}c)_{V} & Q_{8A} & \equiv & (\bar{s}T^{a}b)_{V-A}(\bar{c}T^{a}c)_{A} \end{array}$$

Ulrich Nierste (TTP) 29 Nov 2016

1/N_c counting

For example: $B_d \rightarrow J/\psi K^0$

$$V_0 = \langle J/\psi K^0 | Q_{0V} | B_d
angle = 2 \emph{f}_{\psi} \emph{m}_B \emph{p}_{cm} \emph{F}_1^{BK} \left[1 + \mathcal{O}\left(rac{1}{N_c^2}
ight)
ight]$$

- $1/N_c$ counting for V_8 , $A_8 \equiv \langle J/\psi K^0 | Q_{8V,8A} | B_d \rangle$:
 - Octet matrix elements are suppressed by $1/N_c$ w.r.t. singlet V_0
 - Motivated by $1/N_c$ counting set the limits: $|V_8|, |A_8| \le V_0/3$

Ulrich Nierste (TTP) 29 Nov 2016

1/N_c counting

For example: $B_d \rightarrow J/\psi K^0$

$$V_0 = \langle J/\psi K^0 | Q_{0V} | B_d
angle = 2 f_\psi m_B
ho_{cm} F_1^{BK} \left[1 + \mathcal{O}\left(rac{1}{N_c^2}
ight)
ight]$$

 $1/N_c$ counting for V_8 , $A_8 \equiv \langle J/\psi K^0 | Q_{8V,8A} | B_d \rangle$:

- Octet matrix elements are suppressed by $1/N_c$ w.r.t. singlet V_0
- Motivated by $1/N_c$ counting set the limits: $|V_8|, |A_8| \le V_0/3$

Does the $1/N_c$ expansion work?

$$\frac{BR(B_d \to J/\psi K^0)|_{\text{th}}}{BR(B_d \to J/\psi K^0)|_{\text{exp}}} = 1 \quad \Rightarrow \quad 0.06|V_0| \le |V_8 - A_8| \le 0.19|V_0|$$

Ulrich Nierste (TTP) 29 Nov 2016

Results

$$A_{\mathrm{CP}}^{B_q o f}(t) = rac{S_f \sin(\Delta m_q t) - C_f \cos(\Delta m_q t)}{\cosh(\Delta \Gamma_q t/2) + A_{\Delta \Gamma_q}^f \sinh(\Delta \Gamma_q t/2)}$$

B_d decays:

Final State:	$J/\psi K_{\mathcal{S}}$	ψ (2 S) K_S	$(J/\psi K^*)^0$	$({\it J}/\psi{\it K}^*)^{\parallel}$	$({\it J}/\psi{\it K}^*)^\perp$
$\max(\Delta\phi_d)$ [°]	0.68	0.74	0.85	1.13	0.93
$\max(\Delta S_f) [10^{-2}]$	0.86	0.94	1.09	1.45	1.19
$\max(C_f) [10^{-2}]$	1.33	1.33	1.65	2.19	1.80

...and more.

20 / 25

B_s decays:

Final State	$(J/\psi\phi)^0$	$(J/\psi\phi)^{\parallel}$	$({\it J}/\psi\phi)^{\perp}$
$\max(\Delta\phi_{\mathcal{S}})$ [°]	0.97	1.22	0.99
$\max(\Delta S_f) [10^{-2}]$	1.70	2.13	1.73
$\max(C_f)[10^{-2}]$	1.89	2.35	1.92

Cabibbo-unsuppressed p_f/t_f

We can also constrain p_f/t_f in $b \to c\overline{c}d$ decays:

B_d decays:

Final State	$J/\psi\pi^0$	$(J/\psi ho)^0$	$(J/\psi ho)^\parallel$	$(J/\psi ho)^{\perp}$
$\max(\Delta S_f) [10^{-2}]$	18	22	27	22
$\max(C_f) [10^{-2}]$	29	35	41	36

B_s decays:

Final State	$\emph{J}/ψ\emph{K}_{\mathcal{S}}$
$\max(\Delta S_f) [10^{-2}]$	26
$\max(C_f) [10^{-2}]$	27

Ulrich Nierste (TTP) 29 Nov 2016

 $B_d \to J/\psi \pi^0$: Belle or BaBar?

	$\mathcal{S}_{J/\psi\pi^0}$	$C_{J/\psi\pi^0}$
BaBar (Aubert 2008)	-1.23 ± 0.21	-0.20 ± 0.19
Belle (Lee 2007)	-0.65 ± 0.22	-0.08 ± 0.17

Our results:

$$-0.86 \le {\sf S}_{{\sf J}/\psi\pi^0} \le -0.50$$

$$-0.29 \le C_{J/\psi\pi^0} \le 0.29$$

 \rightarrow Belle favoured

22 / 25

Summary

- OPE works for the penguin pollution in B_{d,s} decays to charmonium, defining the "BSS mechanism" for the up-quark loop.
- No mysterious long-distance enhancement of up-quark penguins.
- Matrix elements are the dominant source of uncertainty. The charm-quark loop is contained in the matrix elements, no justification for the "BSS mechanism" for charm loop.
- Belle measurement of $S_{J/\psi\pi^0}$ is theoretically favoured over BaBar measurement.

Ulrich Nierste (TTP) 29 Nov 2016 23 / 25

Backup slides

Ulrich Nierste (TTP) 29 Nov 2016 24 / 25

Numerics

Analytic result for the penguin pollution:

$$\frac{p_f}{t_f} = \frac{(C_8^u + C_8^t)V_8}{C_0V_0 + C_8(V_8 - A_8)}$$

$$an(\Delta\phi) pprox 2\epsilon \sin(\gamma) ext{Re}\left(rac{p_f}{t_f}
ight) \qquad \qquad \epsilon \equiv \left|rac{V_{us}V_{ub}}{V_{cs}V_{cb}}
ight|$$

Scan for largest value of $\Delta \phi$ using

$$V_0 = 2f_{\psi} m_{B} p_{cm} F_1^{BK}$$

$$egin{array}{lll} 0 \leq & |V_8| & \leq V_0/3 \ 0 \leq & {
m arg}(V_8) & < 2\pi \ 0 \leq & |A_8| & \leq V_0/3 \ 0 \leq & {
m arg}(A_8) & < 2\pi \ \end{array}$$

and varying all input quantities within their experimental and theoretical uncertainties.

Ulrich Nierste (TTP) 29 Nov 2016