

9th International Workshop on the CKM Unitarity Triangle 28th November - 2nd December 2016 Tata Institute of Fundamental Research, Mumbai

Latest ATLAS Results on ϕ_s

Pavel Řezníček (Charles University, Prague), on behalf of the ATLAS collaboration

The ATLAS Experiment

• Transition Ratiation Tracker (TRT) 36 points/track

The ATLAS Experiment

 Triggering η < 2.4 		B-Physics		Calorimeter System
 Precision Tracking η 	< 2.7 Muon detectors	Tile Calorimeter	Liquid Argon Calorimeter	 EM and Hadronic energy LAr EM barrel and EC LAr Had. EC Tile Calorimeter (Fe-Scin.
Muon Specrometer Toroid Magnets Precision µ tracking: • MDT (Monitored Drift Tubes) • CSC (Cathode Strip Chambers) Trigger: • RPC (Resistive Plate Chambel) • TGC (Thin Gas Chamber)				hadronic barrel
				a)/ for l/w

- $p_T > 0.4 \text{ GeV}, |\eta| < 2.5$
- New for Run2: Insertable B-Layer (IBL) an additional inner-most pixel layer (r = 33mm) and lower x/X₀ beam pipe
- Resolution in $m_{\mu+\mu-}$: around 50 MeV for J/ψ and 150 MeV for $\Upsilon(nS)$
- Resolution in b-hadron proper decay time in Run-1 data around 100 fs (~30% improvement with IBL in Run-2)

Ψ Measurement of $\Delta\Gamma_s$ and ϕ_s in B_s \rightarrow J/ $\psi(\mu\mu)\phi(KK)$

• CP violation in $B_s \rightarrow J/\psi \phi$ occurs through the interference in mixing and decay

- Time evolution of flavour tagged $B_s \to J/\psi \phi$ very sensitive to New Physics
- 9 physics parameters to describe $B_s \rightarrow J/\psi \phi$ decay

Datasets and Selection

Latest result using Run-1 pp collision data at 8 TeV, combined with previous 7 TeV analysis

JHEP 1608 (2016) 147

PRD 90 (2014) 052007

- Datasets (pp): 7 TeV data, 5.08 fb⁻¹ (used 4.9 fb⁻¹), L_{max} = 3.7×10³³ cm⁻²s⁻¹
 8 TeV data, 21.3 fb⁻¹ (used 14.3 fb⁻¹), L_{max} = 7.7×10³³ cm⁻²s⁻¹
- **Trigger:** 20 MHz collision rate $\rightarrow \sim 400$ Hz recording
 - B-physics concentrates on low-p_T di-muon signatures, in this case $J/\psi \rightarrow \mu\mu$
 - Trigger on low-p_⊤ (4,6 GeV) di-muon
 - 2 muons at L1 (HW-based)
 - Confirmed at HLT
 - Track vertex fit and J/ψ mass cuts at HLT
 - 8 TeV data: low-p_T maintained introducing barrel triggers at L1
- Selection: full $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ decay chain reconstruction with Inner Detector, no K/π separation
 - J/ ψ selection di-muon vertex $\chi^2/_{NDF}$ <10, J/ ψ invariant mass windows width 0.27 ... 0.48 GeV (barrel → endcap)
 - ϕ selection $p_T(K^{\pm}) > 1$ GeV, ϕ invariant mass window 22 MeV
 - B_s candidates 4-track vertex $\chi^2/_{NDF}$ <3, J/ψφ invariant mass range for analysis (5.15 5.65) GeV, no proper decay time cut

B-Flavour Tagging in $B_s \rightarrow J/\psi\phi$

- Knowledge of B_s/\overline{B}_s flavour at production significantly increases signal PDF sensitivity to ϕ_s
- Three taggers: muon, electron, b-tagged jet

• Key variable: charge of p_T -weighted tracks in a cone (ΔR) around the opposite side primary object (μ , e, b-jet), used to build per-candidates B_s tag probability

B-Flavour Tagging Results

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]
Combined μ	4.12 ± 0.02	47.4 ± 0.2	0.92 ± 0.02
Electron	1.19 ± 0.01	49.2 ± 0.3	0.29 ± 0.01
Segment-tagged μ	1.20 ± 0.01	28.6 ± 0.2	0.10 ± 0.01
Jet-charge	13.15 ± 0.03	11.85 ± 0.03	0.19 ± 0.01
Total	19.66 ± 0.04	27.56 ± 0.06	1.49 ± 0.02

 Per each B_s-candidate, only one out of the available taggers is selected – the one with the highest Dilution

Unbinned Maximum Likelihood Fit

$$\ln \mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_{\mathrm{s}} \cdot \mathcal{F}_{\mathrm{s}} \mid (m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) + f_{\mathrm{s}} \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) + f_{\mathrm{s}} \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b}(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) + (1 - f_{\mathrm{s}} \cdot (1 + f_{B^0} + f_{\Lambda_b}))\mathcal{F}_{\mathrm{bkg}}(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \}$$

Measured variables:

- B_s mass m_i
- B_s proper decay time t_i and its uncertainty σ_{ti}

ΛT

- 3 angles $\Omega_i (\theta_{Ti}, \phi_{Ti}, \psi_{Ti})$
- B_s momentum p_{Ti}
- B_s tag probability p_{B|Qi}
- tagging method M_i

Signal and background PDFs for conditional observables determined from data using sidebands subtraction; PDFs fixed in the fit

Unbinned Maximum Likelihood Fit

$$\ln \mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_{\mathrm{s}} \cdot \mathcal{F}_{\mathrm{s}} \cdot (m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \\ + f_{\mathrm{s}} \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \\ + f_{\mathrm{s}} \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b}(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \\ + (1 - f_{\mathrm{s}} \cdot (1 + f_{B^0} + f_{\Lambda_b})) \mathcal{F}_{\mathrm{bkg}}(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i})]$$

Signal decay main parameters:

- CP violating phase ϕ_s
- Decay width $\Gamma_{\rm s}$ = $(\Gamma_{\rm H}+\Gamma_{\rm L})/2$

λT

- Decay width difference $\Delta \Gamma$ = $\Gamma_{\rm H}$ $\Gamma_{\rm L}$
- CP state amplitudes $|A_{_{0}}(0)|^{_{2}}$ and $|A_{_{||}}(0)|^{_{2}}$
- Strong phases δ_{\parallel} and δ_{\perp}
- S-wave amplitude $|A_s(0)|^2$ and phase δ_s (fitting $\delta_s \delta_\perp$ to avoid high correlations)
- B_s mean mass
- (Δm_s fixed to 17.77 ps⁻¹)

B_d→J/ψK*(Kπ) and Λ_b→J/ψΛ*(Kp) decay reflections, derived from MC, PDG and the LHCb Λ_b→J/ψKp measurement; fixed shape and relative contribution in the fit

Combinatorial background description, derived from data sidebands; angular distribution described by spherical harmonics and fixed in the fit

Weights accounting for **proper decay time trigger efficiency** (muons track d₀ reconstruction efficiency bias); estimated from MC

Fit Projections

CKM 2016, Pavel Řezníček, pavel.reznicek@cern.ch, Charles University, Praque

10

Systematic Uncertainties

-		ϕ_s	$\Delta \Gamma_s$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
		[rad]	$[\mathrm{ps}^{-1}]$	$[\mathrm{ps}^{-1}]$				[rad]	[rad]	[rad]
	Tagging	0.025	0.003	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.001	0.236	0.014	0.004
	Acceptance	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.003	$< 10^{-3}$	0.001	0.004	0.008	$< 10^{-3}$
	Inner detector alignment	0.005	$< 10^{-3}$	0.002	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.134	0.007	$< 10^{-3}$
	Background angles model:									
	Choice of $p_{\rm T}$ bins	0.020	0.006	0.003	0.003	$< 10^{-3}$	0.008	0.004	0.006	0.008
	Choice of mass interval	0.008	0.001	0.001	$< 10^{-3}$	$< 10^{-3}$	0.002	0.021	0.005	0.003
	B_d^0 background model	0.023	0.001	$< 10^{-3}$	0.002	0.002	0.017	0.090	0.011	0.009
	Λ_b background model	0.011	0.002	0.001	0.001	0.007	0.009	0.045	0.006	0.007
	Fit model:									
	Mass signal model	0.004	$< 10^{-3}$	$< 10^{-3}$	0.002	$< 10^{-3}$	0.001	0.015	0.017	$< 10^{-3}$
	Mass background model	$< 10^{-3}$	0.002	$< 10^{-3}$	0.002	$< 10^{-3}$	0.002	0.027	0.038	$< 10^{-3}$
	Time resolution model	0.003	$< 10^{-3}$	0.001	0.002	$< 10^{-3}$	0.002	0.057	0.011	0.001
	Default fit model	0.001	0.002	$< 10^{-3}$	0.002	$< 10^{-3}$	0.002	0.025	0.015	0.002
-										
	Total	0.042	0.007	0.004	0.006	0.007	0.022	0.30	0.05	0.01

- Uncertainty in the calibration of the B_s-tag probability; MC statistical uncertainty included in fit stat. error
- Alternative detector acceptance fit-functions and binning determined from MC
- Radial expansion uncertainties determined from their effect on tracks d_0 in the data
- Background angles model (fixed in UML fit) extracted from data with varying sidebands size and binning
- Uncertainties of relative fraction; fit-model and P-wave contribution
- Uncertainties of relative fraction; fit-model and contributions from $\Lambda_b \to \Lambda^* J/\psi$ decays
- Toy-MC studies; pulls of the default fit model, default fit on toy-data generated with modified PDFs
- (Trigger efficiency modeling in MC found negligible)
- 29.11.2016

Result of the CPV $B_s \rightarrow J/\psi\phi$ Study

• Result with 8 TeV data

• Fit correlation matrix:

	$\Delta\Gamma$	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\parallel}	δ_{\perp}	$\delta_{\perp} - \delta_S$
ϕ_s	0.097	-0.085	0.030	0.029	0.048	0.067	0.035	-0.008
$\Delta\Gamma$	1	-0.414	0.098	0.136	0.045	0.009	0.008	-0.011
Γ_s		1	-0.119	-0.042	0.167	-0.027	-0.009	0.018
$ A_{ }(0) ^2$			1	-0.330	0.072	0.105	0.025	-0.018
$ A_0(0) ^2$				1	0.234	-0.011	0.007	0.014
$ A_S(0) ^2$					1	-0.046	0.004	0.052
δ_{\parallel}						1	0.158	-0.006
$\delta_{\perp}^{"}$							1	0.018

Result of the CPV $B_s \rightarrow J/\psi\phi$ Study

Measurements in Run-2 and Beyond

29.11.2016

Detector Performance in Run-2 and Beyond

- **Resolution:** invariant mass in decay $B_s \rightarrow \mu^+ \mu^-$, proper decay time in $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ decay
- Comparison of Run-1, Run-2 (IBL) and HL-LHC (ITk) performances
- **Trigger:** use L1-topo (keep low thresholds at L1) and complicated HLT with full $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ decay topology reconstruction at trigger level

80

nPV

90

Summary

- ATLAS has measured ϕ_s with full Run-1 dataset, combining 7 & 8 TeV pp collision data, in the decay channel $B_s \rightarrow J/\psi(\mu^+\mu^-) \phi(K^+K^-)$
 - Results are consistent with Standard Model prediction as well as with other measurements:

- The analysis is continuing in Run-2 and will continue also in the future stages of the LHC
 - Detector upgrades (namely in tracking and muon system) and new trigger strategies and tools will help to cope with the high-luminosity environment and achieve precision needed to examine possible beyond-SM effects

Backup

Comparison with Other Experiments

B_s→J/ψφ(KK) channel: ATLAS JHEP 1608 (2016) 147, CMS PLB 757 (2016) 97, LHCb PRL 114 (2015) 041801

29.11.2016

CKM 2016, Pavel Řezníček, pavel.reznicek@cern.ch, Charles University, Praque

Signal PDF

• Signal time-angular PDF: (convolved with detector resolution)

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{dt}\;\mathrm{d}\Omega} = \sum_{k=1}^{10} O^{(k)}(t) g^{(k)}(\theta_T, \psi_T, \phi_T)$$

2 PDFs for B_s and \overline{B}_s (alternative ± signs): PDF(B_s), PDF(\overline{B}_s) Tagged fit: Prob(B_s -tag)*PDF(B_s) + (1-Prob(B_s -tag))*PDF(\overline{B}_s) Untagged fit: Prob(B_s -tag) = 0.5

Symmetries:

$$\{\phi_s, \Delta\Gamma_s, \delta_{\perp}, \delta_{\parallel}\} \to \{\pi - \phi_s, -\Delta\Gamma_s, \pi - \delta_{\perp}, 2\pi - \delta_{\parallel}\}$$

$$\{\phi_s, \Delta\Gamma_s, \delta_{\perp}, \delta_{\parallel}, \delta_S\} \to \{-\phi_s, \Delta\Gamma_s, \pi - \delta_{\perp}, -\delta_{\parallel}, -\delta_S\} \text{ (untagged fit only)}$$

	k	$\mathcal{O}^{(k)}(t)$	$g^{(k)}(\theta_T,\psi_T,\phi_T)$
CP +1	1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
CP +1	2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
CP -1	3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t} + (1+\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$
	4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$
Inter-		$\left[\left(1 + \cos\phi_s\right) e^{-\Gamma_{\rm L}^{(s)}t} + \left(1 - \cos\phi_s\right) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	
ference	5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}]$	$-\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
terms		$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$	
	6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
		$\pm e^{-\Gamma_s t} (\sin \delta_\perp \cos (\Delta m_s t) - \cos \delta_\perp \cos \phi_s \sin (\Delta m_s t))]$	· -
	7	$\frac{1}{2} A_{S}(0) ^{2}\left[\left(1-\cos\phi_{s}\right)e^{-\Gamma_{\rm L}^{(s)}t}+\left(1+\cos\phi_{s}\right)e^{-\Gamma_{\rm H}^{(s)}t}\mp2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
	8	$ A_{S}(0) A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t})\sin(\delta_{\parallel} - \delta_{S})\sin\phi_{s}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
S-wave terms		$\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos\phi_s \sin(\Delta m_s t))]$	1 5
	9	$\frac{1}{2} A_{S}(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_{S})$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$
		$\left \left(1 - \cos\phi_s \right) e^{-\Gamma_{\rm L}^{(s)}t} + \left(1 + \cos\phi_s \right) e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right $	
	10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_S\sin\phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
		$\frac{1}{2} \left[\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t)) \right]$	

29.11.2016

Unbinned Maximum Likelihood Fit

$\ln \mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_s \cdot \mathcal{F}_s \ (m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \\ + f_s \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \\ + f_s \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b}(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \\ + (1 - f_s \cdot (1 + f_{B^0} + f_{\Lambda_b})) \mathcal{F}_{\mathrm{bkg}}(m_i, t_i, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i})) \}$

Signal decay main parameters:

- CP violating phase ϕ_s
- Decay width $\Gamma_{\rm s}$ = $(\Gamma_{\rm H}+\Gamma_{\rm L})/2$
- Decay width difference $\Delta\Gamma$ = $\Gamma_{\rm H}$ $\Gamma_{\rm L}$
- CP state amplitudes $|A_{\scriptscriptstyle 0}(0)|^2$ and $|A_{\scriptscriptstyle \parallel}(0)|^2$
- Strong phases δ_{\parallel} and δ_{\perp}
- S-wave amplitude $|A_S(0)|^2$ and phase δ_S (fitting $\delta_S \delta_{\perp}$ to avoid high correlations)
- B_s mean mass
- $(\Delta m_s \text{ fixed to } 17.77 \text{ ps}^{-1})$

Weights accounting for **proper decay time trigger efficiency** (muons track d₀ reconstruction efficiency bias); estimated from MC

Combinatorial background description, derived from data sidebands; angular distribution described by spherical harmonics and fixed in the fit

 B_d →J/ψK*(Kπ) and Λ_b →J/ψΛ*(Kp) decay reflections, derived from MC, PDG and the LHCb Λ_b →J/ψKp measurement; fixed shape and relative contribution in the fit

> Signal and background PDFs for conditional observables determined from data using sidebands subtraction; PDFs fixed in the fit

Measured variables:

- B_s mass m_i
- B_s proper decay time t_i and its uncertainty σ_{ti}
- 3 angles $\Omega_{i} (\theta_{Ti}, \phi_{Ti}, \psi_{Ti})$
- B_s momentum p_{Ti}
- B_s tag probability p_{B|Qi}
- tagging method M_i

B-Flavour Tagging Distributions

Cone charge for the calibration B⁺ and B⁻ data samples

 B_s-tag probablity distribution in the fit, signal & background obtained using sidebands-subtraction method on the real data

1D Likelihood Scans

• Cross-check of the Gaussian behavior of the likelihood, resp. asymmetry of the errors

UML Fit Pulls

Cross-check of the self-consistency of the Unbinned Maximum Likelihood fit

ATLAS ϕ_s Measurements in Run-1

• Comparison of the 7 and 8 TeV tagged analyses with the combination

	8 TeV data			7 TeV data			Run1 combined		
Par	Value	Stat	Syst	Value	Stat	Syst	Value	Stat	Syst
$\phi_s[\mathrm{rad}]$	-0.110	0.082	0.042	0.12	0.25	0.05	-0.090	0.078	0.041
$\Delta\Gamma_s[\mathrm{ps}^{-1}]$	0.101	0.013	0.007	0.053	0.021	0.010	0.085	0.011	0.007
$\Gamma_s [\mathrm{ps}^{-1}]$	0.676	0.004	0.004	0.677	0.007	0.004	0.675	0.003	0.003
$ A_{\parallel}(0) ^2$	0.230	0.005	0.006	0.220	0.008	0.009	0.227	0.004	0.006
$ A_0(0) ^2$	0.520	0.004	0.007	0.529	0.006	0.012	0.522	0.003	0.007
$ A_{S} ^{2}$	0.097	0.008	0.022	0.024	0.014	0.028	0.072	0.007	0.018
$\delta_{\perp} [\mathrm{rad}]$	4.50	0.45	0.30	3.89	0.47	0.11	4.15	0.32	0.16
$\delta_{\parallel} [{ m rad}]$	3.15	0.10	0.05	[3.04,	[3.23]	0.09	3.15	0.10	0.05
$\delta_{\perp} - \delta_S \text{ [rad]}$	-0.08	0.03	0.01	[3.02,	3.25]	0.04	-0.08	0.03	0.01

Data Taking (pp): Run-1 and Run-2

CKM 2016, Pavel Řezníček, pavel.reznicek@cern.ch, Charles University, Praque

ATUS I

Proper Decay Time Resolution in Real Data

• Comparison of the proper decay time resolution distributions in Run-1 and Run-2 data:

Average proper decay time distribution driven by:

- Tracking performance (with or without IBL)
- Trigger muon p_T thresholds → average B_s-meson momentum

etector & Trigger Upgrades - Phase 0

- Long Shutdown (LS) 1 almost over, LHC starts providing physics data in Spring 2015
- Additional Pixel Layer (IBL) and Be small radius beam pipe
- Topological L1 trigger
- Improved coverage of Muon spectrometer $(1.0 < |\eta| < 1.3)$
- Diamond Beam Monitor, consolidation of some parts of the detector (cooling etc.)

etector & Trigger Upgrades - Phase 1

Fast tracking trigger:

- HW based track finder in the Inner • Detector silicon layers at "offline precision"
- Provides tracks already before the L2 • trigger (first SW based trigger layer)
- Two-step processing: hit pattern • matching & subsequent linear fitting in **FPGAs**

- Goal: no loss of performance when going above LHC nominal luminosity
- New small muon wheel
- New fast-tracking (FTK) at trigger level 1.5. Gradually implemented already during Run 2
- Higher granularity and precision L1 trigger for calorimeter
- TDAQ improved performance

etector & Trigger Upgrades - Phase 2

- Goal: maintain/improve performance despite high lumi.
- Completely new Si based tracking (ITK)
- New trigger system possibly will include HW-based L1 track trigger
- Full granularity calorimetry information
- Upgrade part of the muon systems, fast trigger

Phase 2 Inner Tracker: current ID will become inefficient due to radiation damage; too high occupancy in TRT; high granularity (~4x better) required to cope with high pileup (~up to 200)

