Lattice developments for $\Delta M_{d, s}$

Elvira Gámiz (on behalf of Fermilab Lattice-MILC)
(with C. Bouchard and E. Freeland)

Universidad de Granada / CAFPE
. 9th International Workshop on the CKM Unitarity Triangle, TIFR, Mumbai, Nov 28-Dec 22016 .

Neutral B mixing

* Particularly interesting process for indirect NP searches and constraining BSM theories.
** Tension between $\Delta M_{s, d}$ and ε_{K}. See M. Blanke talk
** Main physical observables $\Delta M_{s, d}$ measured at the subpercent level.

Neutral B mixing

* Particularly interesting process for indirect NP searches and constraining BSM theories.
** Tension between $\Delta M_{s, d}$ and ε_{K}. See M. Blanke talk
** Main physical observables $\Delta M_{s, d}$ measured at the subpercent level.
* Inputs for UT fits: $\xi=\sqrt{\frac{f_{B_{s}}^{2} \hat{B}_{B_{s}}^{(1)}}{f_{B_{d}}^{2} \hat{B}_{B_{d}}^{(1)}}}$ See M. Bona and A. Perez talks

Neutral B mixing

* Particularly interesting process for indirect NP searches and constraining BSM theories.
** Tension between $\Delta M_{s, d}$ and ε_{K}. See M. Blanke talk
** Main physical observables $\Delta M_{s, d}$ measured at the subpercent level.
* Inputs for UT fits: $\xi=\sqrt{\frac{f_{B_{s}}^{2} \hat{B}_{B_{s}}^{(1)}}{f_{B_{d}}^{2} \hat{B}_{B_{d}}^{(1)}}}$ See M. Bona and A. Perez talks
* Using experimental measurements of $\Delta M_{s, d}$ and theoretical determinations of the relevant hadronic matrix elements
\rightarrow extract the CKM matrix elements $\left|V_{t s}\right|,\left|V_{t d}\right|$.

Neutral B mixing

In the Standard Model, the neutral $B-\bar{B}$ mixing occurs at leading order in the EW interactions via the box diagrams

Neutral B mixing

In the Standard Model, the neutral $B-\bar{B}$ mixing occurs at leading order in the EW interactions via the box diagrams

In extensions of the SM, other particles can appear

* In the boxes
* At tree level (flavour changing neutral currents)

Neutral B mixing

In the Standard Model, the neutral $B-\bar{B}$ mixing occurs at leading order in the EW interactions via the box diagrams

In extensions of the SM, other particles can appear

* In the boxes
* At tree level (flavour changing neutral currents)

Through a combination of GIM mechanism and

Cabibbo suppression, the top dominates quark loop contributions

Neutral B mixing

And the mixing is described to a good approximation by the effective hamiltonian

$$
\begin{gathered}
\mathcal{H}_{e f f}^{\Delta B=2}=\sum_{i=1}^{5} C_{i} \mathcal{O}_{i}+\sum_{i=1}^{3} \widetilde{C}_{i} \widetilde{\mathcal{O}}_{i} \quad \text { with } \\
\mathcal{O}_{1}^{q}=\left(\bar{b}^{i} \gamma^{\nu}\left(1-\gamma_{5}\right) q^{i}\right)\left(\bar{b}^{j} \gamma^{\nu}\left(1-\gamma_{5}\right) q^{j}\right) \quad \text { SM } \\
\mathcal{O}_{2}^{q}=\left(\bar{b}^{i}\left(1-\gamma_{5}\right) q^{i}\right)\left(\bar{b}^{j}\left(1-\gamma_{5}\right) q^{j}\right) \quad \mathcal{O}_{3}^{q}=\left(\bar{b}^{i}\left(1-\gamma_{5}\right) q^{j}\right)\left(\bar{b}^{j}\left(1-\gamma_{5}\right) q^{i}\right) \\
\mathcal{O}_{4}^{q}=\left(\bar{b}^{i}\left(1-\gamma_{5}\right) q^{i}\right)\left(\bar{b}^{j}\left(1+\gamma_{5}\right) q^{j}\right) \quad \mathcal{O}_{5}^{q}=\left(\bar{b}^{i}\left(1-\gamma_{5}\right) q^{j}\right)\left(\bar{b}^{j}\left(1+\gamma_{5}\right) q^{i}\right) \\
\tilde{\mathcal{O}}_{1,2,3}^{q}=\mathcal{O}_{1,2,3}^{q} \text { with the replacement }\left(1 \pm \gamma_{5}\right) \rightarrow\left(1 \mp \gamma_{5}\right)
\end{gathered}
$$

(for BSM theories with new heavy particles scale $\geq \mathrm{TeV}$, the local effective four-quark operator remains a convenient description)

Neutral B mixing

And the mixing is described to a good approximation by the effective hamiltonian

$$
\begin{gathered}
\mathcal{H}_{e f f}^{\Delta B=2}=\sum_{i=1}^{5} C_{i} \mathcal{O}_{i}+\sum_{i=1}^{3} \widetilde{C}_{i} \widetilde{\mathcal{O}}_{i} \quad \text { with } \\
\mathcal{O}_{1}^{q}=\left(\bar{b}^{i} \gamma^{\nu}\left(1-\gamma_{5}\right) q^{i}\right)\left(\bar{b}^{j} \gamma^{\nu}\left(1-\gamma_{5}\right) q^{j}\right) \quad \text { SM } \\
\mathcal{O}_{2}^{q}=\left(\bar{b}^{i}\left(1-\gamma_{5}\right) q^{i}\right)\left(\bar{b}^{j}\left(1-\gamma_{5}\right) q^{j}\right) \quad \mathcal{O}_{3}^{q}=\left(\bar{b}^{i}\left(1-\gamma_{5}\right) q^{j}\right)\left(\bar{b}^{j}\left(1-\gamma_{5}\right) q^{i}\right) \\
\mathcal{O}_{4}^{q}=\left(\bar{b}^{i}\left(1-\gamma_{5}\right) q^{i}\right)\left(\bar{b}^{j}\left(1+\gamma_{5}\right) q^{j}\right) \quad \mathcal{O}_{5}^{q}=\left(\bar{b}^{i}\left(1-\gamma_{5}\right) q^{j}\right)\left(\bar{b}^{j}\left(1+\gamma_{5}\right) q^{i}\right) \\
\tilde{\mathcal{O}}_{1,2,3}^{q}=\mathcal{O}_{1,2,3}^{q} \text { with the replacement }\left(1 \pm \gamma_{5}\right) \rightarrow\left(1 \mp \gamma_{5}\right)
\end{gathered}
$$

(for BSM theories with new heavy particles scale $\geq \mathrm{TeV}$, the local effective four-quark operator remains a convenient description)

QCD conserves parity $\langle\bar{B}| \tilde{\mathcal{O}}_{i}|B\rangle=\langle\bar{B}| \mathcal{O}_{i}|B\rangle \rightarrow$ need 5 matrix elements

Neutral B mixing

And the mixing is described to a good approximation by the effective hamiltonian

$$
\begin{gathered}
\mathcal{H}_{e f f}^{\Delta B=2}=\sum_{i=1}^{5} C_{i} \mathcal{O}_{i}+\sum_{i=1}^{3} \widetilde{C}_{i} \widetilde{\mathcal{O}}_{i} \quad \text { with } \\
\mathcal{O}_{1}^{q}=\left(\bar{b}^{i} \gamma^{\nu}\left(1-\gamma_{5}\right) q^{i}\right)\left(\bar{b}^{j} \gamma^{\nu}\left(1-\gamma_{5}\right) q^{j}\right) \quad \text { SM } \\
\mathcal{O}_{2}^{q}=\left(\bar{b}^{i}\left(1-\gamma_{5}\right) q^{i}\right)\left(\bar{b}^{j}\left(1-\gamma_{5}\right) q^{j}\right) \quad \mathcal{O}_{3}^{q}=\left(\bar{b}^{i}\left(1-\gamma_{5}\right) q^{j}\right)\left(\bar{b}^{j}\left(1-\gamma_{5}\right) q^{i}\right) \\
\mathcal{O}_{4}^{q}=\left(\bar{b}^{i}\left(1-\gamma_{5}\right) q^{i}\right)\left(\bar{b}^{j}\left(1+\gamma_{5}\right) q^{j}\right) \quad \mathcal{O}_{5}^{q}=\left(\bar{b}^{i}\left(1-\gamma_{5}\right) q^{j}\right)\left(\bar{b}^{j}\left(1+\gamma_{5}\right) q^{i}\right) \\
\tilde{\mathcal{O}}_{1,2,3}^{q}=\mathcal{O}_{1,2,3}^{q} \text { with the replacement }\left(1 \pm \gamma_{5}\right) \rightarrow\left(1 \mp \gamma_{5}\right)
\end{gathered}
$$

(for BSM theories with new heavy particles scale $\geq \mathrm{TeV}$, the local effective four-quark operator remains a convenient description)

QCD conserves parity $\langle\bar{B}| \tilde{\mathcal{O}}_{i}|B\rangle=\langle\bar{B}| \mathcal{O}_{i}|B\rangle \rightarrow$ need 5 matrix elements In this talk:

Calculation of the five hadronic matrix elements (and combinations of them) using three-flavour lattice QCD FNAL-MILC 1602.03560 (SM prediction of $\Delta M_{d, s}$ and ξ)

1.1 Simulation details

MILC $N_{f}=2+1$ asqtad ensembles

* 600-2000 gauge fields per ensemble
* pions as light as 177 MeV

1.2 Matching and renormalization

* Mostly non-perturbative renormalization (mNPR).

$$
\mathcal{O}_{i}=Z_{V_{b b}^{4}} Z_{V_{d d}^{4}} \rho_{i j} O_{j}+\mathrm{O}\left(\alpha_{s} a, a^{2}\right)
$$

where the nonperturbative factors $Z_{V_{b b, d d}^{4}}$ remove wave-function factors, tadpoles and some vertex corrections.

1.2 Matching and renormalization

* Mostly non-perturbative renormalization (mNPR).

$$
\mathcal{O}_{i}=Z_{V_{b b}^{4}} Z_{V_{d d}^{4}} \rho_{i j} O_{j}+\mathrm{O}\left(\alpha_{s} a, a^{2}\right)
$$

where the nonperturbative factors $Z_{V_{b b, d d}^{4}}$ remove wave-function factors, tadpoles and some vertex corrections.

* Remaining factor $\rho_{i j}$ obtained perturbatively at one-loop.
* Two-loop corrections are incorporated in the chiral+continuum fit.
* Checked mNPR vs pure perturbative matching

1.2 Matching and renormalization

* Mostly non-perturbative renormalization (mNPR).

$$
\mathcal{O}_{i}=Z_{V_{b b}^{4}} Z_{V_{d d}^{4}} \rho_{i j} O_{j}+\mathrm{O}\left(\alpha_{s} a, a^{2}\right)
$$

where the nonperturbative factors $Z_{V_{b b, d d}^{4}}$ remove wave-function factors, tadpoles and some vertex corrections.

* Remaining factor $\rho_{i j}$ obtained perturbatively at one-loop.
* Two-loop corrections are incorporated in the chiral+continuum fit.
* Checked mNPR vs pure perturbative matching
($O_{1,2,3} \mathrm{mix}$ under renormalization, as well as $O_{4,5}$)

1.3 Chiral-Continuum extrapolation

Extrapolate the lattice data to the continuum and infinite volume limits, and physical light quark masses in the Heavy Meson (HM)ChPT framework:

```
* Including dominant light quark discretization effects (NLO Staggered HMChPT)
    and NNLO ChPT analytic terms
* Gluon and light-quark discretization effects a la Symanzik
* Heavy-quark discretization effects (derived in HQET)
* Fine tuning mb
* Include higher order renormalization effects,}\mathcal{O}(\mp@subsup{\alpha}{s}{2})\mathrm{ in the fit.
```

$$
F_{i}=F_{i}^{\text {logs }}+F_{i}^{\text {analytic }}+F_{i}^{\alpha_{s} a^{2}}+F_{i}^{\mathrm{HQ} \text { disc. }}+F_{i}^{m_{b} \text { tune }}+F_{i}^{\text {renor. }}
$$

1.3 Chiral-Continuum extrapolation

Extrapolate the lattice data to the continuum and infinite volume limits, and physical light quark masses in the Heavy Meson (HM)ChPT framework:

* Including dominant light quark discretization effects (NLO Staggered HMChPT) and NNLO ChPT analytic terms
* Gluon and light-quark discretization effects a Ia Symanzik
* Heavy-quark discretization effects (derived in HQET)
* Fine tuning m_{b}.
* Include higher order renormalization effects, $\mathcal{O}\left(\alpha_{s}^{2}\right)$ in the fit.

$$
F_{i}=F_{i}^{\operatorname{logs}}+F_{i}^{\text {analytic }}+F_{i}^{\alpha_{s} a^{2}}+F_{i}^{\mathrm{HQ} \text { disc. }}+F_{i}^{m_{b} \text { tune }}+F_{i}^{\text {renor. }}
$$

1.3 Chiral-Continuum extrapolation

Extrapolate the lattice data to the continuum and infinite volume limits, and physical light quark masses in the Heavy Meson (HM)ChPT framework:

* Including dominant light quark discretization effects (NLO Staggered HMChPT) and NNLO ChPT analytic terms
* Gluon and light-quark discretization effects a la Symanzik
* Heavy-quark discretization effects (derived in HQET)
* Fine tuning m_{b}.
* Include higher order renormalization effects, $\mathcal{O}\left(\alpha_{s}^{2}\right)$ in the fit.

$$
F_{i}=F_{i}^{\text {logs }}+F_{i}^{\text {analytic }}+F_{i}^{\alpha_{s} a^{2}}+F_{i}^{\mathrm{HQ} \text { disc. }}+F_{i}^{m_{b} \text { tune }}+F_{i}^{\text {renor. }}
$$

1.3 Chiral-Continuum extrapolation

Extrapolate the lattice data to the continuum and infinite volume limits, and physical light quark masses in the Heavy Meson (HM)ChPT framework:

* Including dominant light quark discretization effects (NLO Staggered HMChPT) and NNLO ChPT analytic terms
* Gluon and light-quark discretization effects a la Symanzik
* Heavy-quark discretization effects (derived in HQET)
* Fine tuning m_{b}.
* Include higher order renormalization effects, $\mathcal{O}\left(\alpha_{s}^{2}\right)$ in the fit.

$$
F_{i}=F_{i}^{\text {logs }}+F_{i}^{\text {analytic }}+F_{i}^{\alpha_{s} a^{2}}+F_{i}^{\mathrm{HQ} \text { disc. }}+F_{i}^{m_{b} \text { tune }}+F_{i}^{\text {renor. }}
$$

1.3 Chiral-Continuum extrapolation

Extrapolate the lattice data to the continuum and infinite volume limits, and physical light quark masses in the Heavy Meson (HM)ChPT framework:

* Including dominant light quark discretization effects (NLO Staggered HMChPT) and NNLO ChPT analytic terms
* Gluon and light-quark discretization effects a la Symanzik
* Heavy-quark discretization effects (derived in HQET)
* Fine tuning m_{b}.
* Include higher order renormalization effects, $\mathcal{O}\left(\alpha_{s}^{2}\right)$ in the fit.

$$
F_{i}=F_{i}^{\text {logs }}+F_{i}^{\text {analytic }}+F_{i}^{\alpha_{s} a^{2}}+F_{i}^{\mathrm{HQ} \text { disc. }}+F_{i}^{m_{b} \text { tune }}+F_{i}^{\text {renor. }}
$$

1.3 Chiral-Continuum extrapolation

Extrapolate the lattice data to the continuum and infinite volume limits, and physical light quark masses in the Heavy Meson (HM)ChPT framework:

* Including dominant light quark discretization effects (NLO Staggered HMChPT) and NNLO ChPT analytic terms
* Gluon and light-quark discretization effects a la Symanzik
* Heavy-quark discretization effects (derived in HQET)
* Fine tuning m_{b}.
* Include higher order renormalization effects, $\mathcal{O}\left(\alpha_{s}^{2}\right)$ in the fit.

$$
F_{i}=F_{i}^{\text {logs }}+F_{i}^{\text {analytic }}+F_{i}^{\alpha_{s} a^{2}}+F_{i}^{\mathrm{HQ} \mathrm{disc}}+F_{i}^{m_{b} \text { tune }}+F_{i}^{\text {renor. }}
$$

1.3 Chiral-Continuum extrapolation

* $O_{1,2,3}$ and $O_{4,5}$ also mix within ChPT.
* All operators are correlated via common gauge fields and valence quarks.
* Perform a simultaneous (Bayesian) fit to all five operators.

1.4 Stability under fit variations

1.4 Stability under fit variations

base
f_{K} vs f_{π}
mNPR
$\mathrm{mNPR}^{3}+\alpha^{3}$
$\mathrm{PT}_{\mathrm{P}}+\alpha_{s}^{2}$
$\mathrm{PT}_{\mathrm{L}}+\alpha_{s}^{2^{s}}$
$\mathrm{NLO}\left(m_{q}<0.65 m_{s}\right)$
$\mathrm{N}^{3} \mathrm{LO}$
$\mathrm{LO} \times 2$
$\mathrm{NLO} \times 2$
$\mathrm{NNLO} \times 2$
no splitting
generic $\mathrm{O}\left(\alpha_{s} a\right)$
$\mathrm{HQ} \mathrm{O}\left(\alpha_{s} a\right)$ only
HQ O $\left(\alpha_{s} a, a^{2}\right)$ only
no $a \approx 0.12 \mathrm{fm}$
no $a \approx 0.045 \mathrm{fm}$
individual

2.1. Matrix elements relevant for $\mathrm{SM} \Delta M_{s, d}$

In the $\mathrm{SM}, \Delta M_{q} \propto\left|V_{t q}^{*} V_{t b}\right|^{2} f_{B_{q}}^{2} \hat{B}_{B_{q}}^{(1)}$, where $\frac{8}{3} f_{B_{q}}^{2} B_{B_{q}}^{(1)}(\mu) M_{B_{q}}^{2}=\left\langle\mathcal{O}_{1}^{q}\right\rangle(\mu)$

This work: 1602.03560, RBC 14: 1406.6192, Fermilab/MILC 12: 1205.7013, Fermilab/MILC 11: 1112.5642 (proceedings), HPQCD 09: 0902.1815, ETM 13: 1308.1851

In the $S U(3)$-breaking ratio $\xi=\sqrt{\frac{f_{B_{s}}^{2} \hat{B}_{B_{s}}^{(1)}}{f_{B_{d}}^{2} \hat{B}_{B_{d}}^{(1)}}}$, statistical and systematic uncertainties largely cancel (1.5% error dominated by statistics and HQ disc.)

2.1. Matrix elements relevant for $\mathrm{SM} \Delta M_{s, d}$

In the SM, using tree-level inputs for the CKM matrix elements CKMfitter and Fermilab-MILC 1602.03560 results

$$
\begin{gathered}
f_{B_{d}} \sqrt{\hat{B}_{B_{d}}^{(1)}}=227.7(9.5)(2.3) \mathrm{MeV}, f_{B_{s}} \sqrt{\hat{B}_{B_{s}}^{(1)}}=274.6(8.4)(2.7) \mathrm{MeV} \\
\xi=1.206(18)(6)
\end{gathered}
$$

2.1. Matrix elements relevant for $\mathrm{SM} \Delta M_{s, d}$

In the SM, using tree-level inputs for the CKM matrix elements CKMfitter and Fermilab-MILC 1602.03560 results

$$
\begin{gathered}
f_{B_{d}} \sqrt{\hat{B}_{B_{d}}^{(1)}}=227.7(9.5)(2.3) \mathrm{MeV}, f_{B_{s}} \sqrt{\hat{B}_{B_{s}}^{(1)}}=274.6(8.4)(2.7) \mathrm{MeV}, \\
\xi=1.206(18)(6)
\end{gathered}
$$

we get

$$
\begin{aligned}
\Delta M_{d}^{S M}=0.630(53)(42)(5)(13) p s^{-1} & \Delta M_{d}^{e x p t, H F A G}=0.5064(19) p s^{-1} \\
\Delta M_{s}^{S M}=19.6(1.2)(1.0)(0.2)(0.4) p s^{-1} & \Delta M_{s}^{e x p t, H F A G}=17.757(21) p s^{-1} \\
\left(\Delta M_{d} / \Delta M_{s}\right)^{S M}=0.0321(10)(15)(0)(3) p^{-1} &
\end{aligned}
$$

(where the errors are from lattice, CKM matrix elements, other inputs in SM expression, omission of charm quark on the sea, respectively)

* These amount to tensions of $2.1 \sigma, 1.3 \sigma$ and 2.9σ, respectively.

2.2 Matrix elements relevant for BSM physics

Comparison with $N_{f}=2$ ETM collaboration 1308.1851 results

Open symbols: ETM

Full symbols: our results

* Errors range from $\sim 5-15 \%$, larger for B_{d} matrix elements.

2.3 Extraction of CKM matrix elements

Alternatively, use $\Delta M_{q}^{\text {expt }}$ HFAG 2014 and determine CKM factors

* $B \rightarrow K(\pi) \mu^{+} \mu^{-}$results from D . Du et al, 1510.02349
* Full/tree CKM unitarity results come from CKMfitter's fit using all inputs/only observable mediated at tree level of weak interactions.

2.3 Extraction of CKM matrix elements

Alternatively, use $\Delta M_{q}^{\text {expt }}$ HFAG 2014 and determine CKM factors

* $B \rightarrow K(\pi) \mu^{+} \mu^{-}$results from D . Du et al, 1510.02349
* Full/tree CKM unitarity results come from CKMfitter's fit using all inputs/only observable mediated at tree level of weak interactions.

Our results for $\left|V_{t d}\right|,\left|V_{t s}\right|$ are $2 \sigma, 2.9 \sigma$ below the CKM tree-fit results

* Errors dominated by lattice mixing matrix elements

2.4 Bag parameters

Matrix elements of four fermion operators are often recast in terms of bag parameters: $\left\langle\bar{B}_{q}\right| \mathcal{O}_{i}\left|B_{q}\right\rangle \propto f_{B_{q}}^{2} B_{B_{q}}^{(i)}$

2.4 Bag parameters

Matrix elements of four fermion operators are often recast in terms of bag parameters: $\left\langle\bar{B}_{q}\right| \mathcal{O}_{i}\left|B_{q}\right\rangle \propto f_{B_{q}}^{2} B_{B_{q}}^{(i)}$

* Using $f_{B}=193.6(4.2) \mathrm{MeV}, f_{B_{s}}=228.6(3.8) \mathrm{MeV} f_{B_{s}} / f_{B}=1.187(15)$ from Rosner, Stone, Van de Water, PDG review, 1509.02220 and our results \rightarrow full set of bag parameters (in the SM and beyond) and correlations
** For the SM RGI bag parameters we get

$$
\hat{B}_{B_{d}}^{(1)}=1.38(12)(6), \quad \hat{B}_{B_{s}}^{(1)}=1.443(88)(48), \quad \frac{\hat{B}_{B_{d}}^{(1)}}{\hat{B}_{B_{d}}^{(1)}}=1.033(31)(26)
$$

(errors from matrix elements and decay constants respectively)
The ratio is often used as an input for global CKM UT fits

2.4 Bag parameters

Matrix elements of four fermion operators are often recast in terms of bag parameters: $\left\langle\bar{B}_{q}\right| \mathcal{O}_{i}\left|B_{q}\right\rangle \propto f_{B_{q}}^{2} B_{B_{q}}^{(i)}$

* Using $f_{B}=193.6(4.2) \mathrm{MeV}, f_{B_{s}}=228.6(3.8) \mathrm{MeV} f_{B_{s}} / f_{B}=1.187$ (15) from Rosner, Stone, Van de Water, PDG review, 1509.02220 and our results \rightarrow full set of bag parameters (in the SM and beyond) and correlations
** For the SM RGI bag parameters we get

$$
\hat{B}_{B_{d}}^{(1)}=1.38(12)(6), \quad \hat{B}_{B_{s}}^{(1)}=1.443(88)(48), \quad \frac{\hat{B}_{B_{d}}^{(1)}}{\hat{B}_{B_{d}}^{(1)}}=1.033(31)(26)
$$

(errors from matrix elements and decay constants respectively)
The ratio is often used as an input for global CKM UT fits

In progress: Correlated calculation of decay constants \rightarrow decrease bag parameters errors.

2.5 Rare decays $B \rightarrow \mu^{+} \mu^{-}$

Bag parameters $\hat{B}_{B_{d, s}}$ describing B-meson mixing in the $S M$ can be used for (indirect) theoretical predictions of $\mathcal{B}\left(B \rightarrow \mu^{+} \mu^{-}\right)$Buras hep-ph/0303060,Bobeth et al 1311.0903

$$
\left(\frac{\Gamma\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)}{\Delta M_{q}}\right)^{\mathrm{SM}}=\frac{3}{\pi^{3}} \frac{\left(G_{F} M_{W} m_{\mu}\right)^{2}}{\eta_{2 B} S_{0}\left(x_{t}\right)} \frac{C_{A}^{2}\left(\mu_{b}\right)}{\hat{B}_{B_{q}}^{(1)}} \sqrt{1-\frac{4 m_{\mu}^{2}}{M_{B_{q}}^{2}}}
$$

(with $C_{A}\left(\mu_{b}\right)$ including NLO EW and NNLO QCD corrections)

2.5 Rare decays $B \rightarrow \mu^{+} \mu^{-}$

Bag parameters $\hat{B}_{B_{d, s}}$ describing B-meson mixing in the SM can be used for (indirect) theoretical predictions of $\mathcal{B}\left(B \rightarrow \mu^{+} \mu^{-}\right)$Buras hep-ph/0303060,Bobeth et al 1311.0903

$$
\left(\frac{\Gamma\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)}{\Delta M_{q}}\right)^{\mathrm{SM}}=\frac{3}{\pi^{3}} \frac{\left(G_{F} M_{W} m_{\mu}\right)^{2}}{\eta_{2 B} S_{0}\left(x_{t}\right)} \frac{C_{A}^{2}\left(\mu_{b}\right)}{\hat{B}_{B_{q}}^{(1)}} \sqrt{1-\frac{4 m_{\mu}^{2}}{M_{B_{q}}^{2}}}
$$

(with $C_{A}\left(\mu_{b}\right)$ including NLO EW and NNLO QCD corrections)

Herman,Misiak,Steinhauser 1311.1347,Bobeth,Gorbahn,Stamou, 1311.1348

* Using our $N_{f}=2+1 \hat{B}_{B_{d, s}}$, including the effects of a non-vanishing $\Delta \Gamma_{s}$ to compute the time-averaged branching fractions $\overline{\mathcal{B}}$ measured in experiment

$$
\left(\overline{\mathcal{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)^{\mathrm{SM}}=\tau_{H_{s}} \Gamma\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)^{\mathrm{SM}}, \overline{\mathcal{B}}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=\mathcal{B}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)\right)
$$ and the experimental ΔM_{q} HFAG 2014

$$
\begin{gathered}
\overline{\mathcal{B}}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)^{\mathrm{SM}}=9.06(85)(4)(16) \cdot 10^{-11} \\
\overline{\mathcal{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)^{\mathrm{SM}}=3.22(22)(0)(6) \cdot 10^{-9} \\
\left(\frac{\overline{\mathcal{B}}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)}{\overline{\mathcal{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)}\right)^{\mathrm{SM}}=0.02786(109)(12)(19)
\end{gathered}
$$

2.5 Rare decays $B \rightarrow \mu^{+} \mu^{-}$

* SM predictions using

$$
\begin{gathered}
\overline{\mathcal{B}}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)^{\mathrm{SM}}=9.06(85)(4)(16) \cdot 10^{-11} \\
\overline{\mathcal{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)^{\mathrm{SM}}=3.22(22)(0)(6) \cdot 10^{-9} \\
\quad\left(\frac{\overline{\mathcal{B}}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)}{\overline{\mathcal{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)}\right)^{\mathrm{SM}}=0.02786(109)(12)(19)
\end{gathered}
$$

To be compared with the experimental averages from LHCb and CMS 1411.4413

$$
\begin{aligned}
\overline{\mathcal{B}}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)^{\exp } & =3.9\binom{+1.6}{-1.4} \times 10^{-10} \\
\overline{\mathcal{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)^{\exp } & =2.8\binom{+0.7}{-0.6} \times 10^{-9} \\
\left(\frac{\overline{\mathcal{B}}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)}{\overline{\mathcal{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)}\right)^{\exp } & =0.14\binom{+0.08}{-0.06}
\end{aligned}
$$

$\overline{\mathcal{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$agrees with experiment, $\overline{\mathcal{B}}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)$is 2σ above (symmetrizing exp. errors), and the ratio 1.6σ below.

3. Matrix elements contributing to $\Delta \Gamma_{d, s}$

At NLO in the heavy quark expansion $\Delta \Gamma_{q}^{S M}$ depends on

$$
\left\langle\mathcal{O}_{1}\right\rangle,\left\langle\mathcal{O}_{3}\right\rangle,\left\langle R_{0}\right\rangle,\left\langle R_{1,2,3}\right\rangle
$$

* With FNAL/MILC 1602.03560: $\left\langle\mathcal{O}_{1}\right\rangle$ and $\left\langle\mathcal{O}_{3}\right\rangle$ known with 6% and 13% error.
* $R_{0}=\mathcal{O}_{1}+\alpha_{1} \mathcal{O}_{2}+\frac{\alpha_{2}}{2} \mathcal{O}_{3}$ and $R_{1}=\frac{m_{q}}{m_{b}} \mathcal{O}_{4}$ calculated in FNAL/MILC 1602.03560
* VSA estimates for dimension-7 operators R_{2} and R_{3} (50% error)

$$
\begin{aligned}
\left\langle R_{2}\right\rangle & =\frac{1}{m_{b}^{2}}\left(\bar{b}^{i} \overleftarrow{D}_{\alpha} \gamma^{\nu}\left(1-\gamma_{5}\right) D^{\alpha} q^{i}\right)\left(\bar{b}^{j} \gamma^{\nu}\left(1-\gamma_{5}\right) q^{j}\right) \\
\left\langle R_{3}\right\rangle & =\frac{1}{m_{b}^{2}}\left(\bar{b}^{i} \overleftarrow{D}_{\alpha}\left(1-\gamma_{5}\right) D^{\alpha} q^{i}\right)\left(\bar{b}^{j}\left(1-\gamma_{5}\right) q^{j}\right)
\end{aligned}
$$

3. Matrix elements contributing to $\Delta \Gamma_{d, s}$

At NLO in the heavy quark expansion $\Delta \Gamma_{q}^{S M}$ depends on

$$
\left\langle\mathcal{O}_{1}\right\rangle,\left\langle\mathcal{O}_{3}\right\rangle,\left\langle R_{0}\right\rangle,\left\langle R_{1,2,3}\right\rangle
$$

* With FNAL/MILC 1602.03560: $\left\langle\mathcal{O}_{1}\right\rangle$ and $\left\langle\mathcal{O}_{3}\right\rangle$ known with 6% and 13% error.
* $R_{0}=\mathcal{O}_{1}+\alpha_{1} \mathcal{O}_{2}+\frac{\alpha_{2}}{2} \mathcal{O}_{3}$ and $R_{1}=\frac{m_{q}}{m_{b}} \mathcal{O}_{4}$ calculated in FNAL/MILC 1602.03560
* VSA estimates for dimension-7 operators R_{2} and R_{3} (50% error)

$$
\begin{aligned}
\left\langle R_{2}\right\rangle & =\frac{1}{m_{b}^{2}}\left(\bar{b}^{i} \overleftarrow{D}_{\alpha} \gamma^{\nu}\left(1-\gamma_{5}\right) D^{\alpha} q^{i}\right)\left(\bar{b}^{j} \gamma^{\nu}\left(1-\gamma_{5}\right) q^{j}\right) \\
\left\langle R_{3}\right\rangle & =\frac{1}{m_{b}^{2}}\left(\bar{b}^{i} \overleftarrow{D}_{\alpha}\left(1-\gamma_{5}\right) D^{\alpha} q^{i}\right)\left(\bar{b}^{j}\left(1-\gamma_{5}\right) q^{j}\right)
\end{aligned}
$$

Dominant $\Delta \Gamma_{s}^{\mathrm{SM}}$ uncertainties: $\left\langle\mathcal{O}_{1}\right\rangle(14 \% \rightarrow 6 \%),\left\langle R_{2}\right\rangle(15 \%)$ and renormalization scale (8\%) Artuso,Borissov, Lenz 1511.09466

3. Matrix elements contributing to $\Delta \Gamma_{d, s}$

At NLO in the heavy quark expansion $\Delta \Gamma_{q}^{S M}$ depends on

$$
\left\langle\mathcal{O}_{1}\right\rangle,\left\langle\mathcal{O}_{3}\right\rangle,\left\langle R_{0}\right\rangle,\left\langle R_{1,2,3}\right\rangle
$$

* With FNAL/MILC 1602.03560: $\left\langle\mathcal{O}_{1}\right\rangle$ and $\left\langle\mathcal{O}_{3}\right\rangle$ known with 6% and 13% error.
* $R_{0}=\mathcal{O}_{1}+\alpha_{1} \mathcal{O}_{2}+\frac{\alpha_{2}}{2} \mathcal{O}_{3}$ and $R_{1}=\frac{m_{q}}{m_{b}} \mathcal{O}_{4}$ calculated in FNAL/MILC 1602.03560
* VSA estimates for dimension-7 operators R_{2} and R_{3} (50% error)

$$
\begin{aligned}
\left\langle R_{2}\right\rangle & =\frac{1}{m_{b}^{2}}\left(\bar{b}^{i} \overleftarrow{D}_{\alpha} \gamma^{\nu}\left(1-\gamma_{5}\right) D^{\alpha} q^{i}\right)\left(\bar{b}^{j} \gamma^{\nu}\left(1-\gamma_{5}\right) q^{j}\right) \\
\left\langle R_{3}\right\rangle & =\frac{1}{m_{b}^{2}}\left(\bar{b}^{i} \overleftarrow{D}_{\alpha}\left(1-\gamma_{5}\right) D^{\alpha} q^{i}\right)\left(\bar{b}^{j}\left(1-\gamma_{5}\right) q^{j}\right)
\end{aligned}
$$

Dominant $\Delta \Gamma_{s}^{\mathrm{SM}}$ uncertainties: $\left\langle\mathcal{O}_{1}\right\rangle(14 \% \rightarrow 6 \%),\left\langle R_{2}\right\rangle(15 \%)$ and renormalization scale (8\%) Artuso,Borissov, Lenz 1511.09466

On-going: $N_{f}=2+1+1$ HPQCD calculation of dimension-7 operators R_{2} (and R_{3}) (see M. Wingate talk at Lattice 2016)

[^0]
4. Conclusions and outlook

* First three-flavor results for full set of $B_{s, d}$ mixing matrix elements
** All source of systematic uncertainty controlled.
** Most precise determination (1.6\% error) of ξ and $\left\langle\mathcal{O}_{1}^{d, s}\right\rangle$.

4. Conclusions and outlook

* First three-flavor results for full set of $B_{s, d}$ mixing matrix elements
** All source of systematic uncertainty controlled.
** Most precise determination (1.6\% error) of ξ and $\left\langle\mathcal{O}_{1}^{d, s}\right\rangle$.
* Most precise determination of $\left|V_{t s}\right|$ and $\left|V_{t d}\right|$

4. Conclusions and outlook

* First three-flavor results for full set of $B_{s, d}$ mixing matrix elements
** All source of systematic uncertainty controlled.
** Most precise determination (1.6\% error) of ξ and $\left\langle\mathcal{O}_{1}^{d, s}\right\rangle$.
* Most precise determination of $\left|V_{t s}\right|$ and $\left|V_{t d}\right|$: differ with expectations from CKM unitarity (especially when only tree-level inputs are included)
* Several $\sim 2 \sigma$ SM-experiment tensions in oscillations and rare decays.

4. Conclusions and outlook

* First three-flavor results for full set of $B_{s, d}$ mixing matrix elements
** All source of systematic uncertainty controlled.
** Most precise determination (1.6\% error) of ξ and $\left\langle\mathcal{O}_{1}^{d, s}\right\rangle$.
* Most precise determination of $\left|V_{t s}\right|$ and $\left|V_{t d}\right|$: differ with expectations from CKM unitarity (especially when only tree-level inputs are included)
* Several $\sim 2 \sigma$ SM-experiment tensions in oscillations and rare decays.
* Using Fermilab-MILC results for $B_{s, d}$-meson mixing parameters 1602.03560, $V_{c b}$ 1403.0635, 1503.07237 and $V_{u b} 1503.07839$

Compatible with SM at $p=0.32$, but still ample room for BSM flavor-changing neutral currents

Plot by E. Lunghi

4. Conclusions and outlook

On-going Fermlab-MILC
Combined analysis of matrix elements and decay constants \rightarrow correlations \rightarrow reduction of errors for bag parameters

4. Conclusions and outlook

On-going Fermlab-MILC
Combined analysis of matrix elements and decay constants \rightarrow correlations \rightarrow reduction of errors for bag parameters

Future

Use MILC $N_{f}=2+1+1$ HISQ configurations and HISQ valence quarks

* Physical light quark masses \rightarrow reduce (eliminate) chiral extr. error
* Eliminate charm quark sea error
* Smaller discretization error due to the HISQ action

4. Conclusions and outlook

On-going Fermlab-MILC
Combined analysis of matrix elements and decay constants \rightarrow correlations \rightarrow reduction of errors for bag parameters

Future

Use MILC $N_{f}=2+1+1$ HISQ configurations and HISQ valence quarks * Physical light quark masses \rightarrow reduce (eliminate) chiral extr. error

* Eliminate charm quark sea error
* Smaller discretization error due to the HISQ action

Smaller lattice spacings, more accurate scale setting ...

4. Conclusions and outlook

On-going Fermlab-MILC
Combined analysis of matrix elements and decay constants \rightarrow correlations \rightarrow reduction of errors for bag parameters

Future

Use MILC $N_{f}=2+1+1$ HISQ configurations and HISQ valence quarks * Physical light quark masses \rightarrow reduce (eliminate) chiral extr. error

* Eliminate charm quark sea error
* Smaller discretization error due to the HISQ action

Smaller lattice spacings, more accurate scale setting ...
On-going: another Lattice collaborations

* $N_{f}=2+1+1$ HPQCD with HISQ light quarks and non-relativistic b. Preliminary results 1411.6989
\times

[^0]: * Goal: Reduce error in $\left\langle R_{2}\right\rangle$ to $25 \% \Longrightarrow \Delta \Gamma_{s}$ error $19 \% \rightarrow 14 \%$

