Exploring aspects of QCD from Quantum Link Models

Debasish Banerjee

Saha Institute of Nuclear Physics, Kolkata

November 19, 2019 QCD in the non-perturbative regime TIFR, Mumbai

Non-perturbative gauge fields in Nature

Abelian link models: toy meson physics

Non-abelian link models: toy QGP, nuclear physics

(□) (母) (E) (E) E のQC 2/22

Outlook

Non-perturbative gauge fields in Nature

Abelian link models: toy meson physics

Non-abelian link models: toy QGP, nuclear physics

Outlook

Strong Interactions

Properties of protons, neutrons and other particles (hadrons) made of quarks and gluons explained by quantum chromodynamics (QCD).

Hadron spectrum

Quark Gluon Plasma

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10<<10<1/22

Frustrated Magnets

- Emergent gauge fields describe many condensed matter systems.
- ▶ Degenerate ground states in water-ice (H₂O) and spin-ice (pyrochlore materials, e.g. Ho₂Ti₂O₇) → ice states.

- > Tunneling between two ice states via loop operators $10^2 \text{ mK} \sim 10^{-10} \text{ MeV}$.
- ▶ Low energy spin liquid phases admit gauge theory description.

Success stories of classical computers

Monte Carlo methods on fast, reliable supercomputers.

Importance sampling breaks down for rapidly oscillating integrands.

Classical nightmares for sign failures

Neutron Star

Superconductivity

Heavy-Ion Collisions

Hinders first principle studies of finite density systems, non-equilibrium phenomena.

New Models, New Tools

- Quantum Link Models (QLMs) are ideal versatile candidates.
- Horn(1981); Orland, Rohrlich(1990); Chandrasekharan, Wiese(1997)
- Rokshar, Kivelson(1988); Moessner, Sondhi, Fradkin (2002)
- Microscopic descriptions need not be identical to produce the same infra-red physics.

Classical Simulators for Quantum Gauge Matter.

- Reformulations \rightarrow efficient Monte Carlo methods.
- Controlled variational methods \rightarrow Tensor networks.
- Effective field theory \rightarrow analytic understanding.

New Results

- Explore static and dynamic properties.
- Gauge matter in simpler models of condensed matter, particle and astro-particle physics.
- ▶ Increasing complexity to approach actual systems in Nature.

Quantum Simulators for Quantum Gauge Matter.

- Benchmark quantum simulator platforms.
- Quantum circuits for quantum computers.
- **Topological properties** for use in quantum hardware.

Non-perturbative gauge fields in Nature

Abelian link models: toy meson physics

Non-abelian link models: toy QGP, nuclear physics

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Outlook

Quantum links in (1+1)-d

- Quantum links: $U = S^+; U^{\dagger} = S^-; E = S^z$
- Finite dimensional gauge invariant representations.

$$\begin{split} [\mathbf{E}_{xy},\mathbf{U}_{xy}] &= \mathbf{U}_{xy} \\ [\mathbf{E}_{xy},\mathbf{U}_{xy}^{\dagger}] &= -\mathbf{U}_{xy}^{\dagger} \\ [\mathbf{U}_{xy},\mathbf{U}_{xy}^{\dagger}] &= 2\mathbf{E}_{xy} \end{split}$$

- Gauge symmetry: $[G_x, H] = 0;$ where $G_x = (E_{xy} - E_{wx}) - \rho_x$
 - $V = \prod_{x} \exp(iq\theta_{x}G_{x})$ $\tilde{H} = VHV^{\dagger} = H$

Quantum links in (1+1)-d

- Quantum links: $U = S^+; U^{\dagger} = S^-; E = S^z$
- Finite dimensional gauge invariant representations.

$$egin{aligned} & [\mathbf{E}_{xy},\mathbf{U}_{xy}]=\mathbf{U}_{xy} \ & [\mathbf{E}_{xy},\mathbf{U}_{xy}^{\dagger}]=-\mathbf{U}_{xy}^{\dagger} \ & [\mathbf{U}_{xy},\mathbf{U}_{xy}^{\dagger}]=2\mathbf{E}_{xy} \end{aligned}$$

- Gauge symmetry: $[G_x, H] = 0;$ where $G_x = (E_{xy} - E_{wx}) - \rho_x$
 - $V = \prod_{x} \exp(iq\theta_{x}G_{x})$ $\tilde{H} = VHV^{\dagger} = H$

<ロ> < 母> < 量> < 量> < 量> < 量 > 目 の Q · 11/22

String breaking

Using S = 1 links, a confining string can be realized.

- String breaking in a quantum simulator. Banerjee, Dalmonte, Rico Ortega, Stebler, Wiese, Zoller (2012, 2013).
- Dynamical Quantum Phase Transitions. Huang, Banerjee, Heyl (2018).

Scattering toy mesons

Collision of toy meson wave-packets in real time.
 Pichler, Dalmonte, Rico, Zoller, Montanegro (2016).

Closer connections with the same theory in Euclidean time with efficient algorithms?

Abelian Rishons

Quantum links:

 $\mathbf{U} = \mathbf{S}^+; \ \mathbf{U}^\dagger = \mathbf{S}^-; \ \mathbf{E} = \mathbf{S}^z$

 Finite dimensional gauge invariant representations.

$$egin{aligned} & [\mathbf{E}_{xy},\mathbf{U}_{xy}] = \mathbf{U}_{xy} \ & [\mathbf{E}_{xy},\mathbf{U}_{xy}^{\dagger}] = -\mathbf{U}_{xy}^{\dagger} \ & [\mathbf{U}_{xy},\mathbf{U}_{xy}^{\dagger}] = 2\mathbf{E}_{xy} \end{aligned}$$

Commutations satisfied with Schwinger bosons

Link "gauge" invariance: $[H, \mathcal{N}_{xy}] = 0.$

$$H = -\kappa \sum_{xy} \left[\psi_x^{\dagger} b_{y,-}^{\dagger} b_{x,+} \psi_y + \text{h.c.} \right] + \frac{g^2}{2} \sum_{xy} \frac{1}{4} (b_{y,-}^{\dagger} b_{y,-} - b_{x,+}^{\dagger} b_{x,+})^2$$

Non-perturbative gauge fields in Nature

Abelian link models: toy meson physics

Non-abelian link models: toy QGP, nuclear physics

Outlook

Non-Abelian QLMs

$$egin{aligned} & \mathbf{H} = -t\sum_{xy} \left(s_{xy} \psi_x^{i\dagger} \mathbf{U}_{xy}^{ij} \psi_y^j + \mathrm{h.c.}
ight) + rac{g^2}{2} \sum_{xy} \left(\mathbf{L}_{xy}^2 + \mathbf{R}_{xy}^2
ight), \ & \mathbf{G}_x^a = \psi_x^{i\dagger} \lambda_{ij}^a \psi_x^j + \sum_k \left(\mathbf{L}_{x,x+\hat{k}}^a + \mathbf{R}_{x-\hat{k},x}^a
ight). \end{aligned}$$

Link operators can be expressed as fermionic rishons:

$$egin{aligned} \mathbf{L}_{xy}^{a} &= c_{x,+}^{i\dagger}\lambda_{ij}^{a}\,c_{x,+}^{j}; \ \mathbf{R}_{xy}^{a} &= c_{y,-}^{i\dagger}\lambda_{ij}^{a}\,c_{y,-}^{j}; \ \mathbf{U}_{xy}^{ij} &= c_{x,+}^{i}c_{y,-}^{j\dagger} \end{aligned}$$

Color degrees can be summed to obtain color singlets:

 $\psi_x^{i\dagger} \mathsf{U}_{xy}^{ij} \psi_y^j = \psi_x^{i\dagger} c_{x,+}^i c_{y,-}^{j\dagger} \psi_y^j = \mathcal{Q}_x^{\dagger} \mathcal{Q}_y; \quad \mathcal{Q}_{y,\pm k} = c_{y,\pm k}^{j\dagger} \psi_y^j$

16/22

Gauge Invariant States

A U(2) QLM with staggered fermions in (1+1)-d has 4 gauge invariant states (N_{xy} = 1 rishon per link):

• Using the basis states $\{|1\rangle_x, |2\rangle_x, |3\rangle_x, |4\rangle_x\}$

$$\mathcal{Q}_{x,+} = egin{pmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & \sqrt{2} \ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \mathcal{Q}_{x,-} = egin{pmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & \sqrt{2} \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}$$

Banerjee, Bögli, Dalmonte, Rico, Stebler, Wiese, Zoller (2013), 17/22

Expansion of toy fireball

The $\mathbb{Z}(2)$ chiral symmetry breaks spontaneously with m = 0and V = -6t.

Real-time evolution of the order parameter profile $(\overline{\psi}\psi)_x(\tau) = s_x \langle \psi_x^{i\dagger} \psi_x^i - \frac{N}{2} \rangle$ for L = 12, mimicking the expansion of a hot quark-gluon plasma, and the second secon

(d+1)-d SO(3) QLM with adjoint triplet fermions:

$$egin{aligned} \mathsf{H} &= -t\sum_{xy,ab}s_{xy}\left[\psi^{a\dagger}_x\mathsf{O}^{ab}_{xy}\psi^b_y+ ext{h.c.}
ight]+m\sum_xs_x\psi^{a\dagger}_x\psi^a_x\ &= -t\sum_x\left(B^{\dagger}_{x,+}B_{y,-}+ ext{h.c.}
ight)+m\sum_x(-1)^xM_x \end{aligned}$$

Baryons are fermionic color singlets of fermion and link fields.

 $O_{xy}^{ab} = \sigma_{x,+}^a \otimes \sigma_{y,-}^b$

Rico, Dalmonte, Zoller, Banerjee, Bögli, Stebler, Wiese (2018).

<□ > < @ > < \overline > < \overline > \overline \o

(d + 1)-d SO(3) QLM with adjoint triplet fermions:

$$egin{aligned} \mathsf{H} &= -t\sum_{xy,ab}s_{xy}\left[\psi^{a\dagger}_x\mathsf{O}^{ab}_{xy}\psi^{b}_y+ ext{h.c.}
ight]+m\sum_xs_x\psi^{a\dagger}_x\psi^{a}_x\ &= -t\sum_x\left(B^{\dagger}_{x,+}B_{y,-}+ ext{h.c.}
ight)+m\sum_x(-1)^xM_x \end{aligned}$$

Baryons are fermionic color singlets of fermion and link fields. $O_{xy}^{ab} = \sigma_{x,+}^a \otimes \sigma_{y,-}^b$

With 4-fermi couplings, rich physics in d = 1 dimensions:

$$G\sum_{x}\left(M_{x}-rac{3}{2}
ight)^{2}; \quad V\sum_{x}\left(M_{x}-rac{3}{2}
ight)\left(M_{x+1}-rac{3}{2}
ight)$$

				a)	$\Delta m_2 = 0$
	3-d QCD	1-d SO(3)	2-d SO(3)	$\Delta m_2 \neq 0$	SB
gauge symmetry	SU(3)	SO(3)	SO(3)	$^{5-}\chi^{SB}$	$X \Delta m_2$
chiral symmetry	$SU(2)_L \times SU(2)_R$	Z ₂	$\mathbb{Z}_2 \times \mathbb{Z}_2$		
flavor symmetry	$SU(2)_{L=R}$	I	\mathbb{Z}_2	0==	CFT, c
baryon symmetry	<i>U</i> (1)	U(1)	U(1)		
charge conjugation	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	P	S
parity	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2		

Nuclear binding and χ -symmetry restoration at finite μ_B . Rico, Dalmonte, Zoller, Banerjee, Bögli, Stebler, Wiese (2018).

With 4-fermi couplings, rich physics in d = 1 dimensions:

$$G\sum_{x}\left(M_{x}-rac{3}{2}
ight)^{2}; \quad V\sum_{x}\left(M_{x}-rac{3}{2}
ight)\left(M_{x+1}-rac{3}{2}
ight)$$

	3-d QCD	1-d SO(3)	2-d SO(3)
gauge symmetry	SU(3)	SO(3)	SO(3)
chiral symmetry	$SU(2)_L \times SU(2)_R$	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_2$
flavor symmetry	$SU(2)_{L=R}$	I	\mathbb{Z}_2
baryon symmetry	U(1)	U(1)	U(1)
charge conjugation	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2
parity	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2

Nuclear binding and χ -symmetry restoration at finite μ_B . Rico, Dalmonte, Zoller, Banerjee, Bögli, Stebler, Wiese (2018).

0/22

Non-perturbative gauge fields in Nature

Abelian link models: toy meson physics

Non-abelian link models: toy QGP, nuclear physics

Outlook

Outlook

- QLMs are capable of exhibiting many rich physical phenomena in particle physics.
- Applications to frustrated magnetism and high Tc superconductors are relevant for condensed matter physics.
- New algorithmic developments meron cluster methods (Banerjee, Huffman) to look out for.
- With tensor network methods, various dynamical aspects can also be studied.
- Using rishons and the gauge-invariant states are useful for both algorithmic developments as well as quantum simulators.

THANK YOU FOR YOUR ATTENTION