

Measurements of **CKM angles at Belle**

Bilas Pal, University of Cincinnati On behalf of the Belle Collaboration

Outline

- $B^0 \rightarrow \psi(2S)\pi^0$ $B^0 \rightarrow \underline{D}_{CP}h^0$ $B^0 \rightarrow \overline{D}^{(*)0}h^0$ Related to ϕ_1 or β

measurement

- $B^0 \rightarrow \rho^+ \rho^-$ Related to ϕ_2 or α measurement •

CKM2016, 11/30/2016

- ➤ These decays are sensitive to the CP violating angle \$\phi_1\$=arg(-V_{cd}V*_{cb}/V_{td}V*_{tb}) of the unitarity triangle.
- ➢ In the absence of penguin contribution, the direct CP asymmetry A=0 and the mixing-induced CP asymmetry S=-sin(2φ₁). The non vanishing A and the deviation of S from -sin(2φ₁) arise from the penguin contributions, hence these quantities are useful to probe the Physics beyond the SM.
- These decays are also useful to constrain the penguin pollution in b->cc̄s transitions. [M. Ciuchini et. al., PRL 95, 221804(2005); S. Faller et.al., PRD 79, 014030(2009); P. Fringe et. al., PRL 115, 061802(2015)]

V. Chobanova et al., PRD (R) 93, 031101 (2016)

$B^0 \rightarrow \psi(2S)\pi^0$

- This Analysis uses full Belle data set of 772x10° BB
- > $\Psi(2S)$ is reconstructed from four sub-decays:

```
≻ I+I<sup>-</sup> (I=e,µ)
```

- > We include the bremsstrahlung photons that are within 50 mrad of each of electron and positron tracks in e^+e^- modes [both in $\Psi(2S) \& J/\Psi$]
- > Vertex- and mass-constraint fits are performed both in $\Psi(2S)$ & J/ Ψ and massconstraint fit is performed in π^0 reconstructions to improve the momentum resolution.
- Continuum background is suppressed by requiring the ratio of second- to zeroth-order Fox-Wolfram moments R₂<0.5.</p>
- Modified beam-energy-constrained mass and energy difference are used in 2D fit procedure.

$$\Delta \mathsf{E} = \mathsf{E}_{\mathsf{B}} - \mathsf{E}_{\mathsf{beam}}, \qquad M_{\mathsf{bc}}' \equiv \sqrt{(E_{\mathsf{beam}})^2 - \left|\vec{p}_{\psi(2S)} + \sqrt{(E_{\mathsf{beam}} - E_{\psi(2S)})^2 - m_{\pi^0}^2} \frac{\vec{p}_{\pi^0}}{|\vec{p}_{\pi^0}|}\right|^2},$$

> All four sub-decay modes for $\Psi(2S)$ are combined for the branching fraction measurement.

$B^0 \rightarrow \psi(2S)\pi^0$

- Observed signal yield = 85±12 with a significance of 7.2σ including the systematic uncertainty (First observation)
- \succ 𝔅(B⁰→ψ(2S)π⁰)=[1.17±0.17(stat)±0.08(syst)]x10⁻⁵.
- ➢ No CPV measurement yet for this mode.

Time-dependent CPV

$$A_{CP}(\Delta t) = \frac{\Gamma(\overline{B}{}^{0}(\Delta t) \to f) - \Gamma(B{}^{0}(\Delta t) \to f)}{\Gamma(\overline{B}{}^{0}(\Delta t) \to f) + \Gamma(B{}^{0}(\Delta t) \to f)} = S_{f}\sin(\Delta m_{d}\Delta t) + \mathcal{A}_{f}\cos(\Delta m_{d}\Delta t)$$

- ➤ CPV parameter sin(2φ₁) could be accessed, complementary to the measurement from b→ccs transitions.
- > Total 12 modes reconstructed with $D^0 \rightarrow K^+K^-$, $K_S\pi^0$, $K_S\omega$; $D^{*0} \rightarrow D^0\pi^0$ and $h^0 = \eta, \omega, \pi^0$
- Neural Network is used to reduce the dominant continuum background
- > 1D unbinned fit to the variable M_{bc} in order to extract the signal yield.

Decay mode	RARAR	Belle	140 -	
$ \frac{\bar{B}^{0} \rightarrow D_{CP} \pi^{0}}{\bar{B}^{0} \rightarrow D_{CP} \eta} \\ \frac{\bar{B}^{0} \rightarrow D_{CP} \eta}{\bar{B}^{0} \rightarrow D_{CP} \omega} \\ \frac{\bar{B}^{0} \rightarrow D_{CP}^{*} \pi^{0}}{\bar{D}^{0} \dots D^{*} \pi} $	$241 \pm 22 \\ 106 \pm 14 \\ 66 \pm 10 \\ 72 \pm 12 \\ 20 \pm 8$	$ \begin{array}{r} 345 \pm 25 \\ 148 \pm 18 \\ 151 \pm 17 \\ 80 \pm 14 \\ 20 \pm 10 \end{array} $	$\mathbf{X}_{\mathbf{N}}^{120} = \begin{bmatrix} \mathbf{BABAR} \\ \mathbf{Signal} \\ Signa$	$\overset{120}{\underset{W}{\overset{120}{\overset{120}{}{}{}{}{}{}{}{\overset$
$B^0 \to D^+_{CP} \eta$ $\bar{B}^0 \to D^{(*)}_{CP} h^0$ total	39 ± 8 508 ± 31	$\frac{39 \pm 10}{757 \pm 44}$		
CKM2016, 11/30	0/2016		0^{-1} 5.21 5.23 5.25 5.27 5. M_{bc} (GeV/c ²)	$\begin{array}{c} & & & \\ 29 & & 0 \\ & & 5.21 & 5.23 & 5.25 & 5.2 \\ & & & M_{bc} \text{ (GeV/c}^2 \text{)} \end{array}$

6

- The time-dependent measurement is performed analyzing simultaneously the final data samples of Belle & BaBar experiments collected at Y(4S) resonance ~ 1.1 /ab
- -η_fS = 0.66 ± 0.10 ± 0.06 (5.4 σ non-zero CP violation, in agreement with the CPV parameters in b→ccs) → first observation of CPV in this decay
- C = -A = -0.02 ± 0.07 ± 0.03 (no evidence for direct CPV)

$B^0 \rightarrow \overline{D}(*)^0 h^0$

- ➤ Similar to B→D_{CP}h⁰, but $\overline{D^0}$ →K_Sπ⁺π⁻ is not a CP eigenstate, rather mixture of CP eigenstate K_Sρ⁰, flavor specific K^{*}+π⁻ and K^{*}-π⁺
 - Standard time-dependent CP measurement does not work
 - ➤ Model independent measurement of φ₁ in b→cud transitions using a binned Dalitz plot technique (first time for the φ₁ measurement)
 - Binned Dalitz distribution approach is originally proposed for \$\ophi_3\$ measurements by A. Giri *et. al.* [PRD 68, 054018 (2003)]

This approach is sensitive to ϕ_1 or both sin $2\phi_1$ and cos $2\phi_1$.

V. Vorobyev et al., PRD 94, 052004 (2016)

- Standard 2D fit to $M_{bc} \& \Delta E$
- f_{sig} used in the fit of the CPV parameter.

Mode	$N_{\rm sig}$	$f_{\rm sig}$ (%)
$B^0 \rightarrow \bar{D}^0 \pi^0$	464 ± 26	72.1 ± 4.1
$B^0 \rightarrow \bar{D}^0 \eta_{\gamma\gamma}$	99 ± 14	50.5 ± 7.0
$B^0 \rightarrow \bar{D}^0 \eta_{\pi^+\pi^-\pi^0}$	51.3 ± 8.8	66 ± 11
$B^0 \rightarrow \bar{D}^0 \omega$	182 ± 18	58.4 ± 5.7
$B^0 \rightarrow \bar{D}^0 \eta'$	28.2 ± 6.4	70 ± 16
$B^0 \rightarrow \bar{D}^{*0} \pi^0$	103 ± 17	44.1 ± 7.4
$B^0 \rightarrow \bar{D}^{*0} \eta$	36.1 ± 7.6	64 ± 13
Total	962 ± 41	61 ± 2.6

$B^0 \rightarrow D^{(*)0}h^0$

Complicated Signal PDF (TD binned analysis): $\mathcal{P}_{i}(\Delta t, \varphi_{1}) = h_{2}e^{-\frac{|\Delta t|}{\tau_{B}}} \bigg[1 + q_{B}\frac{K_{i} - K_{-i}}{K_{i} + K_{-i}}\cos\left(\Delta m_{B}\Delta t\right) \\ + 2q_{B}\xi_{h^{0}}(-1)^{L}\frac{\sqrt{K_{i}K_{-i}}}{K_{i} + K_{-i}}\sin\left(\Delta m_{B}\Delta t\right) \\ \times (S_{i}\cos 2\varphi_{1} + C_{i}\sin 2\varphi_{1})\bigg],$

Where

- The Dalitz probability K_i is obtained from the control sample B⁺→D⁰π⁺
- The strong phase parameters S_i and C_i are from coherent decay of D⁰D⁰ pairs by CLEO [PRD 82, 112006(2006)]

The value sin $2\phi_1 = 0.691 \pm 0.017$ in b \rightarrow ccs golden mode gives two solutions

- φ₁ = 21.9° (1.3 standard deviations away)
- φ₁ = 68.1° (5.1 standard deviations away)

Our result definitely disfavored the second solutions obtained from the golden mode

 \mathbf{J}

> If tree only, then S_f is directly connected to $sin(2\phi_2)$ and A_f=0

> Penguin contribution shift the measured angle to $\phi_2^{\text{eff}} = \phi_2 + \Delta \phi_2$; $\Delta \phi_2$ can be extracted from an isospin analysis or SU(3) flavor symmetry.

Previous Belle publication with 535x10⁶ BB
 [PRD 76, 011104 (2007)]
 This analysis uses full set of Belle Data
 Fisher discriminant is used to reduce the continuum background

P. Vanhoefer *et. al.,* PRD 93, 032010 (2016)

9D MLH fit to $\Delta E, M_{bc}, \mathcal{F}_{S/B}, m_1(\pi^+\pi^0), m_2(\pi^-\pi^0), \cos\theta_{\rm H}^+, \cos\theta_{\rm H}^-, \Delta t, q$

СКМ2016, 11/30/2016

$$\begin{aligned} \mathcal{B}(B^0 \to \rho^+ \rho^-) &= (28.3 \pm 1.5 \; (\text{stat}) \pm 1.5 \; (\text{syst})) \times 10^{-6}, \\ f_L &= 0.988 \pm \; 0.012 \; (\text{stat}) \pm 0.023 \; (\text{syst}), \\ \mathcal{A}_{CP} &= \; 0.00 \pm 0.10 \; (\text{stat}) \pm 0.06 \; (\text{syst}), \\ \mathcal{S}_{CP} &= \; -0.13 \pm 0.15 \; (\text{stat}) \pm 0.05 \; (\text{syst}). \end{aligned}$$

These are the most precise measurements to date for this decay mode. An improvement of a factor of 2 is achieved compared to previous Belle analysis.

Isospin analysis is performed with inputs also from Belle's $\rho^0 \rho^+$ and $\rho^0 \rho^0$ measurements.[PRD 89,072008 (2014); PRL 91, 221801(2003)]

Two solutions are found, one consistent with SM is (93.7±10.6) deg.

> Also the size of penguin contribution is consistent with zero, (0.0±9.6) deg

• <u>BaBar</u>: $\alpha = (92.4 + 6.0 - 6.5)^{\circ}$

Summary

- First observation of the decay B⁰→ψ(2S)π⁰ is presented, this decay mode can be used in future to measure φ₁
- ➢ First observation of CPV in B→D_{CP}h⁰ is presented using BaBar + Belle joint analysis, which was not possible without combining.
- ➤ Result of model-independent time-dependent binned Dalitz plot for B→D^{(*)0}h⁰ is presented.
- > ϕ_2 from B→pp decays is presented
 - > But that's not all Belle still has number of analyses in preparation for ϕ_1 and ϕ_2 measurements
 - Many years after it's shutdown Belle still producing interesting results and expecting many more from the upcoming Belle II
 - Specially, modes with h⁰ are more interesting with Belle II statistics which may not be so easy by LHCb