Mid- and long-term prospects of measurements of mixing and mixing-induced *CP* violation in the B system at LHCb

Veronika Chobanova on behalf of the LHCb collaboration

9th International Workshop on the CKM Unitarity Triangle, Mumbai 1 December 2016

$$\begin{split} |\mathsf{B}_{L,H}\rangle &= p|\mathsf{B}^0_{q}\rangle \pm q|\overline{\mathsf{B}}^0_{q}\rangle \\ \lambda_f &= \frac{q}{p}\frac{\bar{\mathcal{A}}_f}{\mathcal{A}_f} \end{split}$$

Mixing of neutral B mesons can give rise to two types of CP violation

CPV in the mixing

Arises when $|q/p| \neq 1$ and thus $\mathcal{P}(\mathsf{B}^0 \to \overline{\mathsf{B}}^0) \neq \mathcal{P}(\overline{\mathsf{B}}^0 \to \mathsf{B}^0)$

Mixing-induced CPV

Arises in the interference between mixing and decay, when $\sin(-\arg(\lambda_f)) \neq 0$

 $\beta \text{ from b} \to c\overline{c} \text{s and b} \to \text{s} q \overline{q} \qquad \text{Mixing} \qquad \alpha \text{ from b} \to \text{u} \overline{\text{u}} \text{d} \qquad \gamma - \phi_{_{S}} \text{ from b} \to \text{cs} \overline{\text{u}}$

LHCb prospects

Mixing-induced CPV access through time-dependent decay rates

- Excellent time resolution at LHCb, $\sigma(t) \approx$ 40 fs (B_s⁰ \rightarrow J/ ψ KK)
- B flavour tagging efficiency $\approx 4\%$
- PID efficiencies > 95%, fake rates 1 − 5%

Period	Luminosity	CMS energy
Run 1 2010-2013	$3\mathrm{fb}^{-1}$	$7-8\mathrm{TeV}$
Run 2 2015-2018	8 fb ⁻¹	13 TeV
Runs 3+4 2020-2030	$50\mathrm{fb}^{-1}$	$13-14\mathrm{TeV}$
Run 5 (HL) from 2030 on	300 fb ⁻¹	13 – 14 TeV

[CERN-LHCC-2012-007]

- \leftarrow So far 5 fb⁻¹ of pp collisions
- $\leftarrow \ \mathsf{Detector} \ \mathsf{upgrade} \ \mathsf{2018}\text{-}\mathsf{2020}$
- $\leftarrow \ \, \text{Consider second upgrade for Run 5}$
- ← High-luminosity LHC, x10 current instantaneous luminosity (300 fb⁻¹)

- **1** Mixing-induced CPV in b \rightarrow ccs and b \rightarrow sss transitions of B_s⁰ (ϕ_s)
- 2 Mixing-induced CPV in b \rightarrow ccs and b \rightarrow sq \bar{q} transitions of B⁰ (β)
- 3 CPV in the mixing and B_s^0 and B^0 mixing parameters
- **4** Mixing-induced CPV in b \rightarrow u \overline{u} d transitions of B⁰ (α)
- **6** Mixing-induced CPV in b \rightarrow ucs transitions of B_s⁰ ($\gamma \phi_s$)

ϕ_{ε} in b \rightarrow c \overline{c} s transitions

 Interference between mixing and decay in B⁰ decays via b \rightarrow ccs gives rise to *CP*-violating phase

$$\phi_s \stackrel{\rm SM}{=} -2\arg\left(\frac{V_{tb}V_{ts}^*}{V_{cb}V_{cs}^*}\right) \equiv -2\beta_s = -0.0376 \pm 0.0008\, {\rm rad}$$
 neglecting penguin pollution [CKMFitter]

- ϕ_s precisely predicted by the SM, very sensitive to NP (box diagram), even at high scales
- $\phi_{\epsilon}^{c\bar{c}s}$ measured in a range of decays (see G. Cowan's talk on Tue, WG4): $B_s^0 \to J/\psi KK$, $B_s^0 \to J/\psi \pi \pi$, $B_s^0 \to \psi(2S)\phi$, $B_s^0 \to D_s^+ D_s^-$
- "Golden mode" for ϕ_s is $B_s^0 \to J/\psi[\mu\mu]KK$
- Access to ϕ_{ϵ} , Δm_{ϵ} , Γ_{ϵ} , $\Delta \Gamma_{\epsilon}$, $|\lambda_{\epsilon}|$...

$B_s^0 \to J/\psi[\mu\mu] KK$ at LHCb with 3 fb⁻¹ [PRL 114, 041801 (2015)]

- Mainly $B_s^0 \to J/\psi \phi$ (three polarization states) but also S-wave contribution
- Use angular distribution to disentangle CP-even $(\mathcal{A}_0, \mathcal{A}_{\parallel})$ and CP-odd $(\mathcal{A}_5, \mathcal{A}_{\perp})$ components \rightarrow Fit to three helicity angles and decay time in six $M(\mathsf{KK})$ bins
- Individual ϕ_s^i for $i=0,\perp,\parallel,S$ (possibly different penguin polution)

Parameter	Value
$\Gamma_s \; [\mathrm{ps}^{-1}]$	$0.6603 \pm 0.0027 \pm 0.0015$
$\Delta\Gamma_s \; [\mathrm{ps}^{-1}]$	$0.0805 \pm 0.0091 \pm 0.0032$
$ A_{\perp} ^2$	$0.2504 \pm 0.0049 \pm 0.0036$
$ A_0 ^2$	$0.5241 \pm 0.0034 \pm 0.0067$
$\delta_{\parallel} \; [{ m rad}]$	$3.26 {}^{+0.10}_{-0.17} {}^{+0.06}_{-0.07}$
δ_{\perp} [rad]	$3.08 ^{~+0.14}_{~-0.15} \pm 0.06$
ϕ_s [rad]	$-0.058 \pm 0.049 \pm 0.006$
$ \lambda $	$0.964 \pm 0.019 \pm 0.007$
Δm_s [ps ⁻¹]	$17.711^{+0.055}_{-0.057} \pm 0.011$

 $\phi_{\mathbf{S}}$ from $\mathbf{b} o \mathbf{c}$ \mathbf{c} \mathbf{c} and $\mathbf{b} o \mathbf{s}$ \mathbf{s} β from $\mathbf{b} o \mathbf{c}$ \mathbf{c} \mathbf{c} and $\mathbf{b} o \mathbf{s}$ \mathbf{q} \mathbf{q} Mixing α from $\mathbf{b} o \mathbf{u}$ \mathbf{u} \mathbf{u} \mathbf{u} $\mathbf{v} - \phi_{\mathbf{s}}$ from $\mathbf{b} o \mathbf{c}$ \mathbf{v} \mathbf{v}

ϕ_s in b \to c $\overline{c}s$ transitions

ϕ_s measured also at other experiments

Exp.	Mode	Lumi	ϕ_s [rad]	
LHCb	$J/\psi KK$	$3\mathrm{fb}^{-1}$	$-0.058 \pm 0.049 \pm 0.006$	[PRL 114, 041801 (2015)]
	$J/\psi \pi \pi$	$3\mathrm{fb}^{-1}$	$-0.070 \pm 0.068 \pm 0.008$	[PLB 736 (2014) 186]
	ψ (2S) ϕ	$3\mathrm{fb}^{-1}$	$+0.23^{+0.29}_{-0.28} \pm 0.02$	[PLB 762 (2016) 253]
	$D_s^+D_s^-$	$3\mathrm{fb}^{-1}$	$+0.02\pm0.17\pm0.02$	[PRL 113, 211801 (2014)]
ATLAS	$J/\psi \phi$	$19.2{ m fb}^{-1}$	$-0.098 \pm 0.084 \pm 0.040$	[JHEP 1608 (2016) 147]
CMS	$\mathrm{J}/\psi\phi$	$19.7{ m fb}^{-1}$	$-0.075\pm0.097\pm0.031$	[PLB 757 (2016) 97]
Average	-	-	-0.033 ± 0.033	[HFAG]
Theory	-	-	-0.0376 ± 0.0008	[CKMFitter]

- LHCb dominates world average
- $B_s^0 \rightarrow J/\psi KK$ gives the lowest uncertainties
- Results consistent with SM prediction but still a lot of room for NP

Ongoing measurements of ϕ_s with Run I data (3 fb⁻¹)

- $B_s^0 \to J/\psi KK$ in the KK mass region above the ϕ resonance
- $B_s^0 \rightarrow J/\psi[ee]KK$

Possibility to add new modes in the future

- $\mathsf{B}^0_\mathsf{s} o \mathsf{J}/\psi \eta [\gamma \gamma]$ [LHCb, arXiv:1607.06314]
 - Cons: Much less events and worse mass resolution
 - Pro: $B_s^0 \rightarrow VP$, so no angular analysis needed
- $B_s^0 \to \eta_c \phi$ first observation, [LHCb-PAPER-2016-056, PRELIMINARY]

$$\mathcal{B}(\mathsf{B}^0_\mathsf{s} \to \eta_c \phi) = [5.01 \pm 0.53(\mathsf{stat}) \pm 0.27(\mathsf{syst}) \pm 0.64(\mathsf{norm})] \times 10^{-4}$$

 $\phi_{f s}$ from $f b
ightarrow c{f c}{f s}$ and f b
ightarrow s eta from f b
ightarrow c eta cas and f b
ightarrow s eta diving m lpha from $f b
ightarrow u{f u}{f d}$ from f b
ightarrow c such a significant specific $\gamma - \phi_{f s}$ from f b
ightarrow c such a significant specific $\gamma - \phi_{f s}$ from f b
ightarrow c from f c
ightarrow c from f

ϕ_s in b \to c \overline{c} s transitions

- $B_s^0 o J/\psi KK$ currently statistics dominated, $\sigma_{syst} = 0.12 \sigma_{stat}$
- Main systematics source is limited MC sample size to compute angular acceptance, can be improved easily
 - \Rightarrow possible to reduce total systematic uncertainty to $\sigma_{\mathit{syst}} = 2\,\mathrm{mrad}$
- · All projections in this talk use current results assuming
 - $ightarrow \sigma_{b\overline{b}}(14\,{
 m TeV}) = 2 imes \sigma_{b\overline{b}}(7\,{
 m TeV})$
 - ightarrow same tagging efficiency as now

 $\leftarrow \phi_s$ combined precision to reach $< 5 \, \mathrm{mrad}$ at $300 \, \mathrm{fb}^{-1}$

ϕ_{ε} in b \rightarrow c \overline{c} s transitions

• Measured ϕ_s in $B_s^0 \to J/\psi \phi$ contains penguin pollution!

$$\phi_s^{exp} = -2\beta_s + \Delta\phi_s^{peng} + \Delta\phi_s^{NP}$$

 $\phi_s^{exp} = -2\beta_s + \Delta\phi_s^{peng} + \Delta\phi_s^{NP}$ Crucial to control $\Delta\phi_s^{peng}$ to claim NP!

(More details on the following in S. Akar's talk on Tue, WG4)

Can be extracted using [arXiv:0810.4248]

• $B_n^0 \to J/\psi K^*$ (BF. a_{CR}) [LHCb. JHEP11(2015)082]

No PA and E in $J/\psi K^*$, so need

$$\ensuremath{\mathsf{B}^0} \to \ensuremath{\mathsf{J/\!\psi}\,\rho}$$
 [PLB742(2015)38-49] and

$$B^0
ightarrow J/\psi \phi$$
 [PRD88,072005(2013)] and

$$B^0 \to J/\psi \omega$$
 (ongoing)

 ϕ_s penguin contributions for $J/\psi \phi$ with $3 \text{ fb}^{-1} \left(J/\psi K^* + J/\psi \rho \right)$ [JHEP11(2015)082.PLB742(2015)38-49]

$$\Delta\phi_s^0 = 0.000^{+0.011}_{-0.009}({
m stat})^{+0.009}_{-0.004}({
m syst})$$

$$\Delta\phi_s^{\parallel} = 0.001^{+0.010}_{-0.014}(ext{stat}) \pm 0.008(ext{syst})$$

$$\Delta\phi_s^{\perp} = 0.003^{+0.010}_{-0.014}({
m stat}) \pm 0.008({
m syst})$$

ϕ_s in b \to s \bar{s} s transitions

 ϕ_c from b \rightarrow c \overline{c} s and b \rightarrow s \overline{s} s

- $\phi_s^{s\bar{s}s}$ measured in loop-dominated B_s⁰ decays, sensitive to NP
- SM: $|\phi_s^{s\bar{s}s}| < 0.02$ [arXiv:8010.0249], [NP B774 (2007)64], [PRD 80 (2009) 114026]
- $B_s^0 \to \phi \phi$ at LHCb with 3 fb⁻¹ [PRD 90 052011 (2014)]: $\phi_s = -0.17 \pm 0.15 \pm 0.03$, consistent with SM
- Analysis started with Run 2 data, should reach precision O(0.1 rad) by the end of the run [LHCb-PUB-2014-040]
- Can reach precision below $\mathcal{O}(0.01 \, \text{rad})$ at 300 fb⁻¹

ϕ_{ε} in b \rightarrow s \bar{s} s transitions

ϕ_s in other penguin modes to be studied in the future

- $B_s^0 \to K^{*0} \overline{K}^{*0}$ (see J. García's talk on Thu, WG4)
 - \rightarrow Update with 3 fb⁻¹ ongoing, $\sigma_{stat} < 0.2$ [LHCb PRELIMINARY]
 - ightarrow Can reach precision of $\Delta\phi_spprox\mathcal{O}(0.01\, ext{rad})$ at $300\, ext{fb}^{-1}$
- $B_{\epsilon}^0 \to \phi \pi^+ \pi^-$
 - → First observation by LHCb [arXiv:1610.05187, PRELIMINARY]

$$\mathcal{B}(\mathsf{B_s^0} o \phi \pi^+ \pi^-) = [3.48 \pm 0.23(\mathsf{stat}) \pm 0.17(\mathsf{syst}) \pm 0.35(\phi \phi)] \times 10^{-6}$$

- ① Mixing-induced CPV in b ightarrow ccs and b ightarrow sss transitions of B $_{
 m s}^{
 m 0}$ ($\phi_{
 m s}$)
- **2** Mixing-induced CPV in b \rightarrow ccs and b \rightarrow s $q\bar{q}$ transitions of B⁰ (β)
- 3 CPV in the mixing and B_s and B⁰ mixing parameters
- **4** Mixing-induced CPV in b \rightarrow u $\overline{\mathrm{u}}\mathrm{d}$ transitions of B⁰ (α)
- **5** Mixing-induced CPV in b \rightarrow ucs transitions of B_s⁰ $(\gamma \phi_s)$

β from b \rightarrow c \overline{c} s transitions

- β is the most precisely measured angle of the unitarity triangle
- Current average: $\beta = (22.6 \pm 0.4)^{\circ}$ [CKMfitter]

- Access through mixing-induced CPV parameter $S_{CP} = \sin 2\beta$ in B⁰ decays via $b \rightarrow c\overline{c}s$
- Golden channel is B → J/ψK_S; measured with $3 \, \text{fb}^{-1}$ [PRL 115 031601 (2015)]
- LHCb precision in B \to J/ ψ K $_S^0$ getting close to B factories

Experiment	Lumi	$\sin 2\beta$	
BaBar Belle LHCb	$0.7{\rm ab}^{-1}$	$\begin{array}{c} 0.687 \pm 0.028 (\text{stat}) \pm 0.012 (\text{syst}) \\ 0.667 \pm 0.023 (\text{stat}) \pm 0.012 (\text{syst}) \\ 0.731 \pm 0.035 (\text{stat}) \pm 0.020 (\text{syst}) \end{array}$	[PRL 108 171802 (2012)]
SM (no peng.)		$0.748^{+0.030}_{-0.032}$	[CKMfitter]
Average		0.710 ± 0.011	[CKMfitter]

β from b \rightarrow c \overline{c} s transitions

- $B^0 \to J/\psi K_S^0$ currently statistics dominated, $\sigma_{svst} \approx 0.6\sigma_{stat}$
- $\sin 2\beta$ to reach precision of $\mathcal{O}(0.01)$ at 300 fb⁻¹ \rightarrow penguin pollution of the same order, needs control (see U. Nierste's talk, Tue WG4)
- Can use $B_s^0 \to J/\psi K_S^0$ (U-spin related channel) [JHEP06(2015)131] $\to S(B_s^0 \to J/\psi K_s^0) = -0.08 \pm 0.40 \text{(stat)} \pm 0.08 \text{(syst)}$ with 3 fb⁻¹
- Or $B^0 \to J/\psi \pi^0$ (ongoing at LHCb, Belle II to provide crosscheck) However, contains EW penguin and penguin annihilation (none in $B_{(s)} \rightarrow J/\psi K_S^0$)

To understand completely, would need $B_s^0 \to J/\psi \pi^0$

14

β from b \rightarrow s $q\bar{q}$ transitions

- β accessible also in b \rightarrow s $q\bar{q}$ transitions, sensitive to NP
- Due to tree pollution (CKM suppressed) measure β^{eff}
- Future data will allow time-dependent analysis of $B^0 \to K_S^0 h h'$ ($h = K, \pi$) \rightarrow Can extract sin $2\beta^{eff}$ in two-body approximation or study Dalitz plot and extract β^{eff} directly
- e.g. $B^0 \rightarrow \phi K^0$, where $\Delta S = \sin 2\beta^{eff} \sin 2\beta^{c\bar{c}s} = 0.022^{+0.004}_{-0.002}$ (precise prediction) [QCDf, PRD 80 114008 (2009)]
 - \rightarrow Expected to reach $\sigma(\Delta S) = 0.06(0.02)$ at $50(300) {\rm fb}^{-1}$ [LHCb-PUB-2014-040]

15

- **1** Mixing-induced CPV in b \rightarrow c \bar{c} s and b \rightarrow s \bar{s} s transitions of B_s⁰ (ϕ_s)
- ② Mixing-induced CPV in b \rightarrow c \bar{c} s and b \rightarrow s $q\bar{q}$ transitions of B⁰ (β)
- **3** CPV in the mixing and B_s^0 and B^0 mixing parameters
- **4** Mixing-induced CPV in b \rightarrow u \overline{u} d transitions of B⁰ (α)
- **6** Mixing-induced CPV in b \rightarrow ucs transitions of B_s⁰ $(\gamma \phi_s)$

Γ_{ϵ} and $\Delta\Gamma_{\epsilon}$

- Precise knowledge of mixing parameters important for
 - → time-dependent analysis (systematics)
 - → search and constraint of NP

(More details in G. Cowan's talk on Tue, WG4)

• Already $\sigma_{exp} < \sigma_{theo}$, in agreement [arXiv:1511.09466]

$$\begin{array}{lll} \Delta \Gamma_s^{exp} & = & 0.0827 \pm 0.006 \, \text{ps}^{-1} \\ \Gamma_s^{exp} & = & 0.6643 \pm 0.0020 \, \text{ps}^{-1} \end{array}$$

 Precision dominated by $B_s^0 \to J/\psi K^+ K^-$ [PRL 114, 041801 (2015)]

$$\Delta\Gamma_s = [0.0805 \pm 0.0091 \pm 0.0032] ps^{-1}$$

 $\Gamma_s = [0.6603 \pm 0.0027 \pm 0.0015] ps^{-1}$

 \rightarrow Currently $\sigma_{stat} > \sigma_{svst}$ for both Γ_s and $\Delta \Gamma_s$ but expected to be systematics dominated in the future (track reconstruction)

(More details in S. Vecchi's talk on Wed, WG 4)

• $\Delta \Gamma_d / \Gamma_d$ much smaller in B⁰ system, access through effective lifetime

$$\tau_{\mathrm{B}_q \to f}^{\mathrm{eff}} = \frac{1}{\Gamma_q} \frac{1}{1 - y_d^2} \left[\frac{1 + 2 A_{\Delta\Gamma}^f y_d + y_d^2}{1 + A_{\Delta\Gamma}^f} \right],$$

where $y_a = \Delta \Gamma_a/(2\Gamma_a)$ and $A_{\Delta\Gamma}^f$ depends on the final state, e.g. $A_{\Lambda\Gamma}^f = 0$ for flavour-specific decays

• Measure in various decays, e.g. $B^0 \to J/\psi K_S^0$ and $B^0 \to J/\psi K^*$

LHCb analysis with
$$1\,\mathrm{fb}^{-1}$$
 [JHEP 04 (2014) 114]:
$$\Gamma_d = 0.656 \pm 0.003 \pm 0.002\,\mathrm{ps}^{-1}$$

$$\Delta\Gamma_d = -0.029 \pm 0.016 \pm 0.007\,\mathrm{ps}^{-1}$$

	$\Delta\Gamma_d/\Gamma_d~[\times 10^{-2}]$	
LHCb ATLAS World average SM	$\begin{array}{c} -0.1 \pm 1.1 \pm 0.9 \\ -0.2 \pm 1.0 \end{array}$	[JHEP04(2014)114] [JHEP06(2016)081] [HFAG] [arXiv:1511.09466]

- Reduce σ_{stat} by an order of magnitude for $\Delta\Gamma_d$ and Γ_d at 300 fb⁻¹
- Some main systematic uncertainties reducible (e.g. MC sample size)

Δm_d and Δm_s

Experimental results on Δm_d and Δm_s already much more precise than theory

 Δm_d world's best result, LHCb with 3 fb⁻¹ in B⁰ \to D(*)- $\mu^+\nu_\mu$ [EPJ C (2016) 76]

	$\Delta m_d \; [\mathrm{ns}^{-1}]$	
Average	$\begin{array}{c} 505.5 \pm 2.1 \pm 1.0 \\ 506.4 \pm 1.9 \end{array}$	[HFAG] ` ´
SM	528 ± 78	[arXiv:1511.09466]

Systematics due to background BF, fit, k-factor
 ⇒ only slight improvement in the future

 $\Delta \textit{m}_{\textit{s}}$ world's best result, LHCb with $1\,\text{fb}^{-1}$ in $B_{s}^{0} \to D_{s}^{-}\pi^{+}$ [NJP15(2013)053021]

	Δm_s [ps $^{-1}$]	
LHCb	$17.768 \pm 0.023 \pm 0.006$	[NJP15(2013)053021]
Average	17.757 ± 0.021	[HFAG] ` ´
SM	18.3 ± 2.7	[arXiv:1511.09466]

• Systematics dominant in the future; mainly due to limited knowledge of $\tau(B_s^0)$, should improve

CP violation in the mixing: a_{sl}

CPV in the mixing can be accessed in $B_{(s)} \to D^{\pm}_{(s)} \mu^{\mp} \nu X$ decays through

$$a_{sl}^q = \frac{\Gamma(\mathsf{B} \to f) - \Gamma(\overline{\mathsf{B}} \to \overline{f})}{\Gamma(\mathsf{B} \to f) + \Gamma(\overline{\mathsf{B}} \to \overline{f})} \simeq \frac{\Delta M}{\Delta \Gamma} \tan \phi_{12}, \quad \phi_{12} \equiv \arg \left(-\frac{M_{12}}{\Gamma_{12}} \right)$$

a_{sl}^d	a_{sl}^s	
LHCb 3 fb ⁻¹ $(-2 \pm 19 \pm 3)$ (world's best)	$(3.9 \pm 2.6 \pm 2.0)$	0) × 10 ⁻³ [PRL 114 041601 (2015)] [PRL 117 061803 (2016)]
SM (-4.7 ± 0.6)	$\times~10^{-4}~~(2.22\pm0.27)~\times$	10 ⁻⁵ [arXiv:1511.09466]

- Latest results consistent with SM
- Main systematics: detection asymmetry (statistics of the calibration samples)
 - → Reducible with more data
- $\sigma_{tot} = 2 3 \times 10^{-4} \text{ at } 300 \text{ fb}^{-1}$ [LHCb-PUB-2014-040]

 α from b \rightarrow u $\overline{\mathrm{u}}$ d

- **1** Mixing-induced CPV in b \rightarrow ccs and b \rightarrow sss transitions of B_s⁰ (ϕ_s)
- 2 Mixing-induced CPV in b \rightarrow ccs and b \rightarrow sq \bar{q} transitions of B⁰ (β)
- 3 CPV in the mixing and B_s^0 and B^0 mixing parameters
- **4** Mixing-induced CPV in b \rightarrow u \overline{u} d transitions of B⁰ (α)
- **6** Mixing-induced CPV in b \rightarrow ucs transitions of B_s⁰ ($\gamma \phi_s$)

α from b $\rightarrow u\overline{u}d$

- $\pi \beta \gamma$ (corresponds to α assuming a closing unitarity triangle) accessed in B decays via b \rightarrow u $\overline{\rm u}$ d (tree), e.g. B $\rightarrow \pi\pi$
- Penguin pollution removed in an SU(2) isospin analysis [PRL 65 3381 (1990)]: $\mathcal{B}(\pi^+\pi^-)$, $\mathcal{C}_{CP}(\pi^+\pi^-)$, $\mathcal{S}_{CP}(\pi^+\pi^-)$, $\mathcal{B}(\pi^+\pi^0)$, $\mathcal{B}(\pi^0\pi^0)$, $\mathcal{C}_{CP}(\pi^0\pi^0)$

LHCb 3 fb⁻¹
 [PRELIMINARY, LHCb-CONF-2016-018]
 (see S. Perazzini's talk, Thu WG4)

$$C_{CP}(\pi^+\pi^-) = ? ? ? ? ? \pm 0.07 \pm 0.01$$

 $S_{CP}(\pi^+\pi^-) = ? ? ? ? ? \pm 0.06 \pm 0.01$

• $\sigma_{\textit{stat}} < 0.01$ for $\mathcal{C}_\textit{CP}(\pi^+\pi^-)$ and $\mathcal{S}_\textit{CP}(\pi^+\pi^-)$ at 300 fb $^{-1}$

- ullet Analogous procedure for B ightarrow
 ho
 ho, using longitudinal amplitude
 - \rightarrow Need to extract f_L
- BF and f_L already measured by LHCb with $3\,{\rm fb}^{-1}$ [PLB 747 468-478 (2015)], to add time-dependent parameters with more data

Outline

- $\textcircled{1} \ \, \mathsf{Mixing}\text{-induced CPV in b} \to \mathsf{c}\bar{\mathsf{c}}\mathsf{s} \ \, \mathsf{and} \ \, \mathsf{b} \to \mathsf{s}\bar{\mathsf{s}}\mathsf{s} \ \, \mathsf{transitions} \ \, \mathsf{of} \ \, \mathsf{B}^0_\mathsf{s} \ \, (\phi_\mathsf{s})$
- **2** Mixing-induced CPV in b ightarrow ccs and b ightarrow s $qar{q}$ transitions of B⁰ (eta)
- 3 CPV in the mixing and B_s and B⁰ mixing parameters
- **4** Mixing-induced CPV in b \rightarrow u $\overline{\mathrm{u}}\mathrm{d}$ transitions of B⁰ (α)
- **6** Mixing-induced CPV in b \rightarrow ucs transitions of B_s⁰ $(\gamma \phi_s)$

$$\gamma - \phi_s$$
 from $b \to cs\overline{u}$ in $B_s^0 \to D_s^{\mp} K^{\pm}$

(Details in A. Dziurda's talk on Thu, WG5)

• $B_s^0 \to D_s^{\mp} K^{\pm}$ proceeds through two transitions of similar size

$$\mathcal{S}_{f/\bar{f}} \propto \sin(\delta \mp (\gamma - \phi_s))$$

 $\mathcal{A}_{f/\bar{f}}^{\Delta\Gamma} \propto \cos(\delta \mp (\gamma - \phi_s))$

• Measurement with $3 \, \mathrm{fb}^{-1} \, \gamma = (???^{+17}_{-22})^{\circ}$ [PRELIMINARY, LHCb-CONF-2016-015]

• Can reach precision of $\sigma(\gamma) < 2^{\circ}$ with 300 fb⁻¹

9th CKM workshop

Conclusion

ϕ_s

- Highly sensitive to NP, precisely predicted by the SM, $\sigma(\phi_s)=0.8\,\mathrm{mrad}$
- Adding new modes to increase precision, $\sigma(\phi_s) < 5 \, \text{mrad at } 300 \, \text{fb}^{-1}$
- Penguin pollution starts to get relevant, already have a roadmap for it
- ϕ_s in b \rightarrow sss: $\sigma_{exp} \approx \sigma_{theo}$ at 50 fb⁻¹

$\sin 2\beta$

- Precision already close to B factories, need to control penguins
- Getting close to theory limit

$B - \overline{B}$ mixing

- $\Delta\Gamma_s$, Δm_s , Δm_d : $\sigma_{exp} \ll \sigma_{theo}$, still interesting to increase precision
- $\Delta\Gamma_d$: Future measurements to improve result significantly
- $a_{sl}^{s,d}$: Keep improving precision

α

• $B^0 \to \pi^+\pi^-$ studied with 3 fb⁻¹; to add more modes

γ

ullet Can reach precision of $\sigma(\gamma) < 2^{\circ}$ with 300 fb $^{-1}$ in $B_s^0 o D_s^{\ \mp} K^{\pm}$

26

Thank you for your attention!

BACKUP

Assuming Run 5 upgrade luminosity of $2\times10^{34} \text{cm}^{-1}\,\text{s}^{-1}$

