CP violation results from time-dependent analysis of $B_{d,s} \rightarrow h^+h^-$ decays

Stefano Perazzini CERN On behalf of LHCb collaboration

CKM2016

LHC

9th International Workshop on the CKM Unitarity Triangle TIFR, Mumbai Nov. 28 – Dec. 2, 2016

9th International Workshop on the CKM Unitary Triangle CKM2016, 28 November - 2 December 2016 Mumbai, India

Outline

- Introduction
- Measurement of time-dependent CP violation in $B^0 \rightarrow \pi^+ \pi^-$ and $B_s \rightarrow K^+ K^-$ decays at LHCb
 - LHCb-CONF-2016-018
 - 1 fb⁻¹ @ 7 TeV and 2 fb⁻¹ @ 8 TeV
 - Event selection
 - Experimental decay rates
 - Flavour tagging calibration
 - Decay time resolution
- Results and conclusions

CPV observable

• Observables are the time-dependent asymmetries of the $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$

$$\mathcal{A}(t) = \frac{\Gamma_{\bar{B}_{(s)}^{0} \to f}(t) - \Gamma_{B_{(s)}^{0} \to f}(t)}{\Gamma_{\bar{B}_{(s)}^{0} \to f}(t) + \Gamma_{B_{(s)}^{0} \to f}(t)} = \frac{-C_{f} \cos\left(\Delta m_{d(s)}t\right) + S_{f} \sin\left(\Delta m_{d(s)}t\right)}{\cosh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right)}$$

CPV from mixing/decay interference

CPV in the decay

$$C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}$$

$$\left|C_{f}\right|^{2} + \left|S_{f}\right|^{2} + \left|A_{f}^{\Delta\Gamma}\right|^{2} = 1$$

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f}$$

- q/p is related to the neutral B mixing
- A_f/Ā_f is the ratio between the CP conjugate decay amplitudes

Motivation

d.s

- A rich set of physics processes participates to the $B^0 \rightarrow \pi^+ \pi^-$ and $B_s \rightarrow K^+ K^-$ decays
 - Tree and penguin decay topologies
 - Neutral B-mixing
- Time dependent CPV observables are sensitive to CKM angle γ and -2 β_s
 - presence of loop diagrams introduce hadronic uncertainties
 - presence of loop diagrams makes the CPV observables sensitive to New Physics contribution
 - opportunity to compare results with the CKM phases determined from decays dominated by tree-level topologies

3

Current status

Experiment	S _{CP} (π ⁺ π [−])	С _{СР} (п⁺п⁻)	Correlation	Reference
BaBar N(BB)=467M	$-0.68 \pm 0.10 \pm 0.03$	$-0.25 \pm 0.08 \pm 0.02$	-0.06 (stat)	PRD 87 (2013) 052009
Belle N(BB)=772M	$-0.64 \pm 0.08 \pm 0.03$	$-0.33 \pm 0.06 \pm 0.03$	-0.10 (stat)	PRD 88 (2013) 092003
<u>LHCb</u> ∫ <i>L</i> dt=1.0 fb ⁻¹	$-0.71 \pm 0.13 \pm 0.02$	$-0.38 \pm 0.15 \pm 0.02$	0.38 (stat)	JHEP 1310 (2013) 183
Average	-0.66 ± 0.06	-0.31 ± 0.05	0.00	HFAG correlated average $\chi^2 = 0.9/4 \text{ dof } (\text{CL}=0.92 \Rightarrow 0.1\sigma)$

- $C_{\pi\pi}$ and $S_{\pi\pi}$ are well constrained by B-factories and LHCb
 - All three experiments are in good agreement
- C_{KK} and S_{KK} are measured only by LHCb using 1 fb⁻¹ @ 7 TeV
 - No measurement is available for $A_{\ensuremath{\mbox{\tiny KK}}}$

JHEP 1310 (2013) 183

$$C_{KK} = 0.14 \pm 0.11 ext{ (stat)} \pm 0.03 ext{ (syst)}, \ S_{KK} = 0.30 \pm 0.12 ext{ (stat)} \pm 0.04 ext{ (syst)},$$

How to exploit B→hh decays

- First proposal to use TD CP asymmetries of B→hh decays dates back to 1999
 - Use U-spin symmetry to constraint QCD uncertainties
 - Use external inputs of φ_{d}

How to exploit B→hh decays

- Main issue is to reduce uncertainties coming from strong phases and amplitudes
 - Use also isospin symmetry to further constraint hadronic uncertainties
 - Combined analysis of $B^{0,\pm} \rightarrow \pi^{0,\pm} \pi^{0,\pm}$ and $B_s \rightarrow K^+ K^-$
 - κ = allowed level of non factorizable U-spin breaking

 New strategies are being developed to reduce the usage of U-spin symmetry → arXiv:1608.00901v1 Measurement of timedependent CP asymmetries in $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$ decays

Event selection (I)

- Event selection is separated in two steps
 - − First → Particle identification
 - Separate the two final states
 - Reduce amount of cross contamination from other B→hh modes to ~10% of the signal

8

Event selection (II)

- A multivariate Boosted Decision
 Tree classifier is used to remove
 combinatorial background
 - aiming at best S/sqrt(S+B)
 - Use kinematical and topological variables
 - Parameterise signal from MC
 - Background from sideband

Event selection (II)

- A multivariate Boosted Decision
 Tree classifier is used to remove
 combinatorial background
 - aiming at best S/sqrt(S+B)
 - Use kinematical and topological variables
 - Parameterise signal from MC
 - Background from sideband

Determination of time-dependent asymmetries

- CP violation coefficients are determined from unbinned maximum likelihood fits to
 - Mass, decay time, per-event mistag probability, per-event decay time error
 - Simultaneous fit to $\pi^+\pi^-$, K⁺K⁻ and K⁺ π^- spectra
- Crucial ingredients, both diluting the amplitude of timedependent asymmetries
 - Determination of the flavour of the B at the production (flavour tagging)
 - Determination of the decay time resolution
 - fundamental for $B_s \rightarrow K^+K^-$ decay due to fast oscillation

Experimental decay rates for signals

$$f(t,\xi,\eta,\,\delta_t) = K^{-1} \left\{ \left[(1-A_{\rm P})\,\Omega_{\rm sig}\,(\xi,\eta) + (1+A_{\rm P})\,\bar{\Omega}_{\rm sig}\,(\xi,\eta) \right] I_+(t,\,\delta_t) + \left[(1-A_{\rm P})\,\Omega_{\rm sig}\,(\xi,\eta) - (1+A_{\rm P})\,\bar{\Omega}_{\rm sig}\,(\xi,\eta) \right] I_-(t,\,\delta_t) \right\},\,$$

t = decay time ξ = B flavour η = predicted mistag

 δ_{t} = decay time error

$$\begin{split} I_{+}\left(t,\,\delta_{t}\right) &= \left\{ e^{-\Gamma t'} \left[\cosh\left(\frac{\Delta\Gamma}{2}t'\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma}{2}t'\right) \right] \right\} \otimes \\ &= R\left(t - t'|\delta_{t}\right) \cdot g\left(\delta_{t}\right) \cdot \varepsilon_{\mathrm{acc}}\left(t\right), \\ I_{-}\left(t,\,\delta_{t}\right) &= \left\{ e^{-\Gamma t} \left[C_{f} \cos\left(\Delta mt'\right) + S_{f} \sin\left(\Delta mt'\right) \right] \right\} \otimes \\ &= R\left(t - t'|\delta_{t}\right) \cdot g\left(\delta_{t}\right) \cdot \varepsilon_{\mathrm{acc}}\left(t\right). \end{split}$$

Experimental decay rates for signals

$$\begin{split} f\left(t,\xi,\eta,\,\delta_{t}\right) &= K^{-1}\left\{\left[\left(1-A_{\rm P}\right)\Omega_{\rm sig}\left(\xi,\eta\right)+\left(1+A_{\rm P}\right)\bar{\Omega}_{\rm sig}\left(\xi,\eta\right)\right]I_{+}\left(t,\,\delta_{t}\right)+\right.\\ &\left[\left(1-A_{\rm P}\right)\Omega_{\rm sig}\left(\xi,\eta\right)-\left(1+A_{\rm P}\right)\bar{\Omega}_{\rm sig}\left(\xi,\eta\right)\right]I_{-}\left(t,\,\delta_{t}\right)\right\}, \end{split}$$

$$-\varepsilon_{acc}(t) = decay timeacceptance$$

- Introduced by selection requirements
- Studied from simulation

Experimental decay rates for signals

$$\begin{split} f\left(t,\xi,\eta,\,\delta_t\right) &= K^{-1}\left\{\left[(1-A_{\rm P})\Omega_{\rm sig}\left(\xi,\eta\right) + (1+A_{\rm P}(\bar{\Omega}_{\rm sig})\xi,\eta)\right]I_+\left(t,\,\delta_t\right) + \\ \left[(1-A_{\rm P})\,\Omega_{\rm sig}\left(\xi,\eta\right) - (1+A_{\rm P})\,\bar{\Omega}_{\rm sig}\left(\xi,\eta\right)\right]I_-\left(t,\,\delta_t\right)\right\}, \end{split}$$

$$I_{+}(t, \delta_{t}) = \begin{cases} e^{-\Gamma t'} \left[\cosh\left(\frac{\Delta\Gamma}{2}t'\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma}{2}t'\right) \right] \end{cases} \otimes \\ R\left(t - t'|\delta_{t}\right) \cdot g\left(\delta_{t}\right) \cdot \varepsilon_{\mathrm{acc}}\left(t\right), \\ I_{-}\left(t, \delta_{t}\right) = \begin{cases} e^{-\Gamma t'} \left[C_{f} \cos\left(\Delta mt'\right) - S_{f} \sin\left(\Delta mt'\right)\right] \end{cases} \otimes \\ R\left(t - t'|\delta_{t}\right) \cdot g\left(\delta_{t}\right) \cdot \varepsilon_{\mathrm{acc}}\left(t\right). \end{cases}$$

- $\Omega(\eta, \xi) =$ flavour tagging
- R(t,δt)= decay time resolution
 - A_p = production asymmetry Determined from time-dependent asymmetries of untagged $B^0 \rightarrow K\pi$ and $B_s \rightarrow \pi K$ decays

Flavour tagging

SS Pion In this analysis only **Opposite Side** SS Kaon Signal Decay SS Kaon NNet PV (OS) taggers are used: SS Proton SS Pion BDT information is used on a B^0 per-event basis Same Side Opposite Side $\omega = \mathbf{p}_0 + \mathbf{p}_1(\eta - \eta)$ \overline{B} OS $\rightarrow Xl^{-}$ taggers OS Muon Calibration **OS Vertex Charge** OS Electron **OS** Charm Use time-dependent asymmetry of Raw asymmetry 0.4 0.3 0.2 0.1 $B^0 \rightarrow K^+ \pi^-$ for calibration **LHCb Preliminary** LHCb-CONF-2016-018 ∞ Events / (5 MeV/c²) 0008 0008 0008 0008 _HCb-CONF-2016-01 LHCb Preliminary ~ (1-2w) $\rightarrow K\pi$ • π **K** -0.1 → K⁺K^{*}, → π⁺π⁻ 4000 -0.2 3-Body bkg. -0.3 Comb. bkg. 2000 -0.4 0:5 10 5.2 5.4 5.6 5.8 15 Decay time [ps] $m_{K\pi}$ [GeV/c²]

Decay time resolution (I)

- Decay time resolution introduce a dilution factor in the oscillation amplitudes
 - Determined on per-event basis calibrating the decay time error δ_t computed in reconstruction

$D = \exp(-0.5 \Delta m^2 \sigma_t^2)$

 Δm is the oscillation frequency of the B meson σ_t is the width of the decay time resolution

$$\sigma_{t} = q_{0} + q_{1}(\delta_{t} - 30 \text{ fs})$$

Relation between δ_t and σ_t is studied on MC

Calibration curve is very similar between $B_s \rightarrow \pi K$ and $B_s \rightarrow D_s \pi$ in simulation

Decay time resolution (II)

 Calibration on data is performed measuring simultaneously the time-dependent asymmetries of

 $B^0 \rightarrow D^-\pi^+$ and $B_s \rightarrow D_s\pi$ decays

D = exp(-0.5 $\Delta m^2 \sigma_t^2$) $\sigma_t = q_0 + q_1(\delta_t - 30 \text{ fs})$

> LHCb Preliminary $q_0 = 46.1 \pm 4.1 \text{ fs}$ $q_1 = 0.81 \pm 0.38$

Result of the simultaneous fit $\pi^+\pi^-$ spectrum

η

0.1

LHCb-CONF-2016-018	3
--------------------	---

Fixed parameters					
Parameter	Value				
Δm_d	$0.5065\pm0.0019{ m ps}^{-1}$				
Γ_d	$0.6579\pm0.0017{ m ps}^{-1}$				
$\Delta\Gamma_d$	0				
Δm_s	$17.757 \pm 0.021 \text{ ps}^{-1}$				
Γ_s	$0.6654\pm0.0022{ m ps}^{-1}$				
$\Delta\Gamma_s$	$0.083 \pm 0.007 \ \mathrm{ps}^{-1}$				
$\rho(\Gamma_s, \Delta\Gamma_s)$	-0.292				

Averages from Heavy Flavour Averaging Group

Results of the simultaneous fit

$\pi^+\pi^-$ spectrum

(LHCb Preliminary)

$$C_{\pi^+\pi^-} = -0.243 \pm 0.069,$$

 $S_{\pi^+\pi^-} = -0.681 \pm 0.060,$

statistical error only

Result of the simultaneous fit

K⁺K⁻ spectrum

Fixed parameters						
Parameter	Value					
Δm_d	$0.5065\pm0.0019{ m ps}^{-1}$					
Γ_d	$0.6579\pm0.0017{ m ps}^{-1}$					
$\Delta\Gamma_d$	0					
Δm_s	$17.757 \pm 0.021 \text{ ps}^{-1}$					
Γ_s	$0.6654\pm0.0022{ m ps}^{-1}$					
$\Delta\Gamma_s$	$0.083 \pm 0.007 \ \mathrm{ps^{-1}}$					
$ ho(\Gamma_s,\Delta\Gamma_s)$	-0.292					

Averages from Heavy Flavour Averaging Group

Result of the simultaneous fit K⁺K⁻ spectrum

(LHCb Preliminary)

$C_{K^+K^-}$	=	$0.236 \pm 0.062,$
$S_{K^+K^-}$	—	$0.216 \pm 0.062,$
$A_{K^+K^-}^{\Delta\Gamma}$	=	$-0.751 \pm 0.075.$

statistical error only

Systematic uncertainties

LHCb Preliminary - LHCb-CONF-2016-018

Parameter	$C_{\pi^+\pi^-}$	$S_{\pi^+\pi^-}$	$C_{K^+K^-}$	$S_{K^+K^-}$	$A_{K^+K^-}^{\Delta\Gamma}$
Time acceptance	0.001	0.001	0.003	0.003	0.093
Time resolution calibration	0.000	0.000	0.016	0.017	0.012
Time resolution model	0.000	0.000	0.007	0.008	0.000
Time error distribution	0.002	0.002	0.002	0.002	0.019
Input parameters: $\Gamma_{d,s}$, $\Delta\Gamma_{d,s}$, $\Delta m_{d,s}$	0.001	0.001	0.001	0.003	0.046
Tagging calibration	0.002	0.003	0.002	0.003	0.000
Cross-feed bkg. time model	0.003	0.002	0.001	0.001	0.021
Comb. and 3-body bkg. time model	0.001	0.001	0.000	0.000	0.001
Mass model	0.003	0.003	0.006	0.005	0.010
Total	0.005	0.005	0.019	0.020	0.109

Final results

LHCb Preliminary - LHCb-CONF-2016-018

~			Statistical					
$C_{\pi^+\pi^-}$	=	$-0.24 \pm 0.07 \pm 0.01,$	Correlation	$C_{\pi^+\pi^-}$	$S_{\pi^+\pi^-}$	$C_{K^+K^-}$	$S_{K^+K^-}$	$A^{\Delta\Gamma}_{K^+K^-}$
$S_{\pi^+\pi^-}$	=	$-0.68 \pm 0.06 \pm 0.01$,	$C_{\pi^+\pi^-}$	1.000	0.376	-0.009	-0.011	0.000
<i>a n n</i>			$S_{\pi^+\pi^-}$	—	1.000	-0.055	-0.013	0.000
$C_{K^+K^-}$	=	$0.24 \pm 0.06 \pm 0.02,$	$C_{K^+K^-}$	—	—	1.000	-0.005	0.035
$S_{K^+K^-}$	=	$0.22 \pm 0.06 \pm 0.02,$	$S_{K^+K^-}$	—	—	—	1.000	0.037
$A_{K^+K^-}^{\Delta\Gamma}$	=	$-0.75 \pm 0.07 \pm 0.11.$	$A_{K^+K^-}^{\Delta i}$	—	—	—	—	1.000

- Significant improvement with respect to previous result
 - Results are in agreement with ~ x 2 better precision
- Most precise determination of $S_{\pi\pi}$
- First determination of $A_{KK}^{\Delta\Gamma}$
- Naïve determination of CPV significance
 - Neglecting correlations and summing in quadrature statistical and systematic uncertainties
 - (C_{KK} , S_{KK} , A_{KK}) is 5.3 σ from (0, 0, 1)
 - (C_{KK}, S_{KK}) is 4.9σ from (0, 0)
 - $\,C_{KK}$ and S_{KK} are 3.6 σ and 3.3 σ from 0, respectively

Final results

By courtesy of the Heavy Flavour Averaging Group

Conclusions

- The measurement of time-dependent CP violation with $B^0 \rightarrow \pi^+ \pi^-$ and $B_s \rightarrow K^+ K^-$ have been presented
 - The full Run1 sample of LHCb has been used
 - 1 fb⁻¹ @ 7 TeV and 2 fb⁻¹ @ 8 TeV
 - Significant improvement with respect to previous measurement
 - Only OS taggers have been used
 - Update including SS taggers will follow shortly
 - Best measurement of $S_{\pi\pi}$ from a single experiment
 - With a naïve determination of CPV significance
 - First evidence of CPV in the decay and in the mixing/decay interference in $B_s \rightarrow K^+K^-$
 - First observation of CPV in the $B_s \rightarrow K^+K^-$ decay
 - More accurate determination of significance is needed

Backup

The LHCb detector

The LHCb detector

