CKM2016, 9th International Workshop on the CKM Unitarity Triangle TIFR, Mumbai, Nov 28 – Dec 3rd 2016

Latest Results from CKMfitter

Alejandro Pérez Pérez IPHC – CNRS Strasbourg

On behalf of the CKMfitter Group

Outline

Introduction

Latest update results

- The inputs
- Standard Model CKM global fit
- FCNC studies and New Physics (NP)
- The CKMlive project
- Summary and Outlook

Flavour and New Physics (NP)

$$\mathcal{L}_{SM} = \mathcal{L}_{gauge}(A_a, \Psi_j) + \mathcal{L}_{Higgs}(\phi, A_a, \Psi_j)$$

- Highly symmetric: gauge & flavour symmetries
- Stable w.r.t. quantum corrections
- Well-tested: electroweak precision tests

- Ad hoc potential
- Not stable w.r.t. quantum corrections
- Origin of SM favour structure: quark masses and CKM matrix
- Not fully tested: some room for NP

Unexplained hierarchy among 10 out of 19 SM parameters (m = 0)

Masses and CP violation (CPV)

Interesting phenomenology

- Strong hierarchy of CP asymmetries according to generations
- GIM suppression of Flavour-Changing Neutral Currents (FCNC)
- Quantum sensitivity (via loops) to large range of scales
- Potential to unravel patterns of NP deviations at high energy scales

\Rightarrow complementary to direct searches!

The CKM matrix and the Unitarity Triangle

- In SM, Mass states ≠ Weak states
- Flavour dynamics: weak transitions which mix quarks of different generations

 \Rightarrow Encoded in unitary CKM matrix (V_{CKM})

• 3 generations \Rightarrow 4 parameters describing V_{CKM}

- 3 real and 1 phase \Rightarrow only source of CPV in SM
- Wolfenstein parametrisation, defined to hold in all orders in λ and rephasing invariant

 \Rightarrow Explicitly shows V $_{\rm CKM}$ generation hierarchy

$$\lambda^{2} = \frac{|V_{us}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}} \quad A^{2}\lambda^{4} = \frac{|V_{cb}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}}$$

Unitarity triangles

- Graphical representation of V_{CKM} unitarity
- \mathbf{B}_{d} triangle: $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$

Weak states CKM matrix Mass states

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Extracting CKM parameters

Observables

- Use QCD CP invariance to build hadronic independent CPV asymmetries
- Or determine hadronic inputs from data
- Observables double requirement
 - Good experimental accuracy
 - Satisfying control of attached theoretical uncertainty

Statistical framework to combine data and assess theoretical uncertainties

Phys. J. C 41 (2005)

CKMfitter Statistical Framework

- $\pmb{q} = (\pmb{A}, \lambda, ar{
 ho}, ar{\eta} \ldots)$ parameters to be determined
 - $\mathcal{O}_{meas} \pm \sigma_{\mathcal{O}}\,$ measured values of observables
 - $\mathcal{O}_{
 m th}(q)$ theoretical description of observables (in given model)
- In case of statistical only uncertainties $\chi^2(q) = \sum_{\sigma \in Q} \left(\frac{\mathcal{O}_{\text{th}}(q) \mathcal{O}_{\text{meas}}}{\sigma \circ} \right)^2$
 - Central value: estimator \hat{q} max likelihood:

$$\chi^2(\hat{q}) = \min_{q} \chi^2(q)$$

-5

- Range: CL for each q_0 (p-value for $q = q_0$) by: $\Delta \chi^2(q_0) = \chi^2(q_0) \min_q \chi^2(q)$ assumed to obey χ^2 law with ndf = dim(q) to yield CLs
- Pull: comparison of χ^2_{min} with and without one measurements

$$p_{\mathcal{O}} = \sqrt{\min_{q} \chi^2_{\text{with meas}}(q) - \min_{q} \chi^2_{\text{without meas}}(q)}$$

Theoretical uncertainties within Rfit scheme

- Modify likelihood *L* = exp(-χ²/2) to get a χ² with flat bottom (th. error) and parabolic wall (stat)
- Values within range of th. error treated on the same footing

Alejandro Pérez Pérez, CKM2016 TIFR, Mumbai, Dec. 1st 2016

Alternative models for theo uncertainties discussed in 1611.04768 (2016)

The global CKM fit inputs: all at once

Parameter	Value $\pm \text{Error}(s)$	Reference	Er: GS	rors TH
$ V_{ud} $ (nuclei)	$0.97425 \pm 0 \pm 0.00022$	[1]	-	*
$ V_{us} f_+^{K\to\pi}(0)$	0.2163 ± 0.0005	[3]	*	*
$ V_{cd} $ (νN)	0.230 ± 0.011	[3]	*	
$ V_{cs} (W \to c\bar{s})$	$0.94^{+0.32}_{-0.26} \pm 0.13$	[3]	*	*
$ V_{ub} $ (semileptonic)	$(4.01 \pm 0.08 \pm 0.22) \times 10^{-3}$	[4-6]	*	*
$ V_{cb} $ (semileptonic)	$(41.00 \pm 0.33 \pm 0.74) \times 10^{-3}$	[4, 6]	*	*
$\mathcal{B}(\Lambda_p \to p\mu^-\overline{\nu}_\mu)_{q^2 > 15} / \mathcal{B}(\Lambda_p \to \Lambda_c \mu^-\overline{\nu}_\mu)_{q^2 > 7}$	$(1.00 \pm 0.09) \times 10^{-2}$	[7]	*	-
$\mathcal{B}(B^- \to \tau^- \overline{\nu}_{\tau})$	$(1.08 \pm 0.21) \times 10^{-4}$	[4,8]	*	120
$\mathcal{B}(D_s^- \to \mu^- \overline{\nu}_\mu)$	$(5.57 \pm 0.24) \times 10^{-3}$	[4]	*	-
$\mathcal{B}(D_s^- \to \tau^- \overline{\nu}_{\tau})$	$(5.55 \pm 0.24) \times 10^{-2}$	[4]	*	-
$\mathcal{B}(D^- \to \mu^- \overline{\nu}_{\mu})$	$(3.74 \pm 0.17) \times 10^{-4}$	[4]	*	*
$\mathcal{B}(K^- \to e^- \overline{\nu}_e)$	$(1.581 \pm 0.008) \times 10^{-5}$	[3]	*	10700
$\mathcal{B}(K^- \to \mu^- \overline{\nu}_\mu)$	0.6355 ± 0.0011	[3]	*	-
$\mathcal{B}(\tau^- \to K^- \overline{\nu}_{\tau})$	$(0.6955 \pm 0.0096) \times 10^{-2}$	[4]	*	-
$\mathcal{B}(K^- \to \mu^- \overline{\nu}_\mu) / \mathcal{B}(\pi^- \to \mu^- \overline{\nu}_\mu)$	1.3365 ± 0.0032	[3]	*	120
$\mathcal{B}(\tau^- \to K^- \overline{\nu}_\tau) / \mathcal{B}(\tau^- \to \pi^- \overline{\nu}_\tau)$	$(6.431\pm0.094)\times10^{-2}$	[4]	*	(7)
$\mathcal{B}(B_s \to \mu \mu)$	$(2.8^{+0.7}_{-0.6}) \times 10^{-9}$	[9]	*	
$ V_{cd} f_{\pm}^{D\to\pi}(0)$	0.148 ± 0.004	[10]	*	-
$ V_{cs} f_+^{D\to K}(0)$	0.712 ± 0.007	[10, 11]	*	-
$ \varepsilon_K $	$(2.228 \pm 0.011) \times 10^{-3}$	[3]	*	1.7.1
Δm_d	$(0.510 \pm 0.003) \text{ ps}^{-1}$	[4]	*	_
Δm_s	$(17.757 \pm 0.021) \text{ ps}^{-1}$	[4]	*	-
$\sin(2\beta)_{[c\bar{c}]}$	0.691 ± 0.017	[4]	*	-
$(\phi_s)_{[b \to c\bar{s}s]}$	-0.015 ± 0.035	[4]	*	-
$S_{\pi\pi}^{+-}, C_{\pi\pi}^{+-}, C_{\pi\pi}^{00}, \mathcal{B}_{\pi\pi}$ all charges	Inputs to isospin analysis	[12-20]	*	
$S_{\rho \rho L}^{+-}, C_{\rho \rho L}^{+-}, S_{\rho \rho}^{00}, C_{\rho \rho}^{00}, \mathcal{B}_{\rho \rho, L}$ all charges	Inputs to isospin analysis	[21-27]	*	-
$B^{0} \rightarrow (\rho\pi)^{0} \rightarrow 3\pi$	Time-dependent Dalitz analysis	[28, 29]	*	-
$B^- \rightarrow D^{(*)} K^{(*)-}$	Inputs to GLW analysis	[30, 31]	*	-
$B^- \rightarrow D^{(*)} K^{(*)-}$	Inputs to ADS analysis	[31, 32]	*	-
D (a) (a)	COOT D 11 1	[00]		

tter

The global CKM fit inputs: Unitarity angles

Two decades of CKM

Alejandro Pérez, Pérez, CKM2016 TIFR, Mumbai, Dec. 1st 2016

Latest global CKM fit

Global fit remains excellent:

• EPS-HEP 2015: χ^2_{min} = 28.0 (N_{dof} = 21), p-value 14% (1.5 σ)

Latest global CKM fit: Consistency with CKM picture

0.7

0.6

Ы

Validity of Kobayashi-Maskawa picture of CP violation

CKM fitter

ICHEP 16

 $\epsilon_{\rm K}$

CP violating only

γ

Latest global CKM fit: Pulls

- Pulls for various observables (included in the fit or not)
- For 1D, pull obs =

 $\sqrt{\chi^2_{\text{min; with obs}} - \chi^2_{\text{min; w/o obs}}}$

- If Gaussian errors, uncorrelated, random vars of mean 0 and variance 1
- Here correlations, and some pulls = 0 due to Rfit model th. Errors
- Slight discrepancy within |V_{μs}| obs (~2.3σ)

Latest global CKM fit: $|V_{us}|$ and $|V_{ud}|$ 2015 \rightarrow 2016

- "Direct" (semi-lep & lep) vs "indirect (other sectors)
- **|V_{ud}|,|V_{us}|:** nuclear β + lep K, π and τ decays
- Similar accuracy for exp and lattice inputs
- |V_{ud}| from super-allowed β decays 10 times more precise

■ $|V_{us}|$ from K→ π /v in discrepancy with that of K→/v & τ →Kv_{τ} due new f^{K→ π}(0) from lattice $\geq^{g_{0.220}}$ (FLAG16, ETM16, MILC13, RBC-UKQCD15) \Rightarrow Culprit of new tension in global fit (pull ~2.3 σ)^{0.215}

Latest global CKM fit: $|V_{ub}|$, $|V_{cb}|$ excl. vs incl.

- Previous fit uses particular average of exclusive & inclusive SL B-decays
- Using only exclusive SL B-decays to fix |V_{ub}| (and |V_{cb}|) changes ε_κ contour
- But not the best fit point
- When using inclusive SL B-decays, more agreement with $B^+ \rightarrow \tau^+ \nu$
- Notice △m_s ring stops closing
- Overall agreement between various constrains remains excellent in both excl. and incl. fits
 - Little variation of p-value of best fit point
 - Little variation of Wolfenstein parameters

0.4

- Increase in the average used as input for $|V_{ub}|_{SL}$
- Slight tension between $|V_{\mu}|_{Sl}$ and $sin(2\beta)$ (1.5 σ for 2D hypothesis)
- **Reducing uncertainty on CKM** parameters (mostly $\overline{\eta}$ -bar)

Alejandro Pérez Pérez, CKM2016 TIFR, Mumbai, Dec. 1s

Latest global CKM fit: $|V_{\mu}|_{SI}$ vs sin(2 β) correlation

0.7

>

Latest global CKM fit: B_s triangle

• $\bar{\rho}_{B_s} + i\bar{\eta}_{B_s} = -\frac{V_{us}V_{ub}^*}{V_{cs}V_{cb}^*}$ provides the B_s Unitarity triangle ($\lambda^4, \lambda^2, \lambda^2$)

FCNC $\triangle F = 1$: $B_{s,d} \rightarrow \mu^+ \mu^-$

 $Br(B_d \to \tau \tau)_{t=0} \times 10^8 = 2.05^{+0.13}_{-0.15}$ $Br(B_s \to \tau \tau)_{t=0} \times 10^7 = 6.98^{+0.38}_{-0.43}$

Alejandro Pérez Pérez, CKM2016 TIFR, Mumbai, Dec. 1st 2016

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

FCNC $\triangle F = 1$: K $\rightarrow \pi \nu \nu$ future impact

FCNC \triangle **F** = 2: observables and NP

• Neutral-meson mixing described by $i \frac{d}{dt} \begin{pmatrix} |B_q(t)\rangle \\ |\bar{B}_q(t)\rangle \end{pmatrix} = \left(M^q - \frac{i}{2}\Gamma^q\right) \begin{pmatrix} |B_q(t)\rangle \\ |\bar{B}_q(t)\rangle \end{pmatrix}$

- M and Γ are hermitian
- Mixing due to non-diagonal terms $M_{12}^{q} (i/2)\Gamma_{12}^{q}$
- Diagonalisation gives $|B^q_{H,L}
 angle=
 ho|B_q
 angle\mp q|ar{B}_q
 angle$ of masses and widths M $_{_{
 m H,L}}^{_{
 m q}}\&$ $\Gamma_{_{
 m H,L}}^{_{
 m q}}$
- Observables (in terms of M_{12}^{q} and Γ_{12}^{q})
 - Mass and width difference: $\Delta m_{_{\rm H}} = M_{_{\rm H}}^{_{\rm H}} M_{_{\rm H}}^{_{\rm q}}$ and $\Delta \Gamma_{_{\rm d}} = \Gamma_{_{\rm H}}^{_{\rm q}} \Gamma_{_{\rm H}}^{_{\rm q}}$
 - Semi-leptonic asymmetry $a_{SL}^q = \frac{\Gamma(\bar{B}_q(t) \rightarrow \ell^+ \nu X) \Gamma(B_q(t) \rightarrow \ell^- \nu X)}{\Gamma(\bar{B}_q(t) \rightarrow \ell^+ \nu X) + \Gamma(B_q(t) \rightarrow \ell^- \nu X)}$
 - Mixing phase in time-dependent analyses

NP potential

- Γ_{12} dominated by tree decays into charm: NP if changes in tree-level decays
- M₁₂ dominated by (virtual) top boxes: NP if heavy particle in the box
- Assume generic and independent NP contributions $M^{d}_{_{12}}$ and $M^{s}_{_{12}}$ only

$$M^q_{12} = (M^q_{12})_{SM} imes \Delta_q \quad \Delta_q = |\Delta_q| e^{i\phi^{\Delta}_q} = (1 + h_q e^{2i\sigma_q})$$

Can use $\Delta m_{d}^{}, \Delta m_{s}^{}, \beta, \phi_{s}^{}, a^{d}_{SL}^{}, a^{s}_{SL}^{}, \Delta \Gamma_{s}^{}$ to constrain $\Delta_{d}^{}$ and $\Delta_{s}^{}$

FCNC \triangle **F** = 2: **B**_d mixing

 $\mathsf{Im} \Delta_{\mathsf{d}}$

Summer 2014

- Constraints @ 68% CL
- **Dominant constraints from** Δm_{d} **and** β
- Good agreement with other constraints
- Compatible with SM
 - $\Delta_{d} = 0.94^{+0.18}_{-0.15} + i (-0.11^{+0.11}_{-0.05})$
 - 2D SM hyp. ($\Delta_d = 1 + i0$): 0.9 σ
- Still room for NP in Δ_d

Summer 2014

FCNC △F = 2: B mixing

Prospects of FCNC \triangle F = 2: bounds on Energy Scale

From $C_{ij}^2/\Lambda^2 \times (\bar{b}_L \gamma^\mu q_{j,L})^2$

$b \sim 1.5$	$ C_{ij} ^2$	(4 π) ²
$n \simeq 1.5$	$ V_{ti}V_{tj} ^2$	$G_F \Lambda^2$

Couplings	NP loop order	Scales (in Te <i>B_d</i> mixing	eV) probed by <i>B_s</i> mixing
$ C_{ij} = V_{ti}V_{tj}^* $	tree level	17	19
(CKM-like)	one loop	1.4	1.5
$ C_{ij} = 1$	tree level	2×10^{3}	$5 imes 10^2$
(no hierarchy)	one loop	2×10^{2}	40

CKM*live* project

- Web application which allows to configure CKM analysis with CKMfitter package
- Analysis card send to calculus server with results send back to user with e-mail notification

What can be done with CKMlive (so far)?

- Global CKM fit of SM hypothesis (CKM parameters metrology)
- User can use inputs proposed by CKMfitter group or set its own
- SM predictions of most CKM-related flavour observables
- NOTE: application could be extended to include model-independent NP in ∆F = 2 quark transitions depending on the interest

- CKMlive application is here: <u>ckmlive.in2p3.fr</u>
- Contact mail:

ckmlive@clermont.in2p3.fr

Summary and outlook

Flavour Physics

- Potential to unravel NP beyond energy scale of direct searches
- Analysis of flavour processes crucial

Determination of CKM matrix elements

- High precision era of determination of CKM parameters
- Precise theoretical inputs (Lattice QCD & others..) are of major importance
- No signs of deviation from CKM picture
- $|V_{\mu\nu}|$ from K $\rightarrow \pi/\nu$ brings tension to global fit due to new $f_{+}^{K\rightarrow\pi}(0)$ from lattice
- $V_{\mu\nu}$ and V_{ch} inclusive vs exclusive issue still not resolved
- Others processes to include?

FCNC and NP

- $\Delta F = 1: B_s \rightarrow \mu^+ \mu^-, K \rightarrow \pi \nu \nu$
- $\Delta F = 2$: NP potential from mixing observables (still room for NP)

CKMfitter group & page

Jérôme Charles **Olivier Deschamps** Sébastien Descotes-Genon Heiko Lacker Evan Machefer Andreas Menzel Stéphane Monteil Valentin Niess José Ocariz Jean Orloff Alejandro Perez Wenbin Qian Vincent Tisserand Karim Trabelsi Philip Urquijo Luiz Vale Silva

More at: <u>http://ckmfitter.in2p3.fr</u>

Be Wolfen UT ang UT ang CKM e Input p Decay	stein parameters les and sides gle and apex lements arameters branching fractions		
PS CKM e Input p Decay	lements arameters		
Decay			
P For a more a	standing flactors	loace mad the summary	au of long to and enquil
Mitter prop Multinentein	amongloss and Indals	na incariante	
Wonenstein p	varameters and Janski	og invananc	
Observable	Central ± 1 σ	±2 σ	±3 σ
A	0.8227 [+0.0066 -0.0136]	0.823 [+0.013 -0.027]	0.823 [+0.020 -0.035]
A	0.22543 [+0.00042 -0.00031]	0.22543 [+0.00075 -0.00064]	0.22543 [+0.00101 -0.00097]
pber	0.1504 [+0.0121 -0.0062]	0.150 [+0.029 -0.013]	0.150 [+0.037 -0.019]
nbar	0.3540 [+0.0069 -0.0076]	0.354 [+0.016 -0.019]	0.354 [+0.025 -0.027]
3			
J (10 ⁻⁵)	3.140 [+0.069 -0.084]	3.14 [+0.16 -0.21]	3.14 [+0.26 -0.31]
[J [10 ⁻⁵]	3.140 (+0.069 -0.084)	3.14 [+0.16 -0.21]	3.14 [+0.26 -0.31]
UT angles an	3.140 (+0.069 -0.084) d sides:	3.14 [+0.16 -0.21]	3.14 [+0.26 -0.31]
U (10 ⁻⁵) UT angles an Observable	3.140 (+0.069 -0.084) d sides: Central ± 1 σ	3.14 [+0.16 -0.21] ±2σ	3.14 [+0.26 -0.31] ±3σ
UT angles an Observable sin 20	3.140 (+0.069 -0.084) d sides: Central ± 1 σ -0.013 (+0.034 -0.071)	3.14 (+0.16 -0.21) ± 2 σ [0.013 (+0.069 -0.168]	3.14 (+0.26 -0.31) ± 3 σ -0.01 (+0.11 -0.22)
U (10 ⁻⁵) UT angles an Observable sin 20 sin 20 (meas not in the fit)	3.140 (+0.069 -0.084) d sides: Central ± 1 σ [-0.013 (+0.034 -0.071)] -0.024 (+0.038 -0.134)	2.14 (+0.16 -0.21) ± 2 σ 0.013 (+0.069 -0.168) 0.024 (+0.075 -0.181)	3.14 [+0.26 -0.31] ± 3 σ -0.01 [+0.11 -0.22] -0.02 [+0.11 -0.23]
UT angles an Observable sin 20 sin 20 (meas. not in the fit) sin 28	3.140 [+0.060 -0.084] d sides: Central ± 1 σ -0.013 [+0.034 -0.071] -0.024 [+0.038 -0.134] 0.710 [+0.011 -0.011]	3.14 [+0.16 -0.21] ± 2 σ [0.013 [+0.069 -0.168]] 0.024 [+0.075 -0.181] 0.710 [+0.025 -0.021]	3.14 [+0.26 -0.31] ± 3 σ [-0.01 [+0.11 -0.22] -0.02 [+0.11 -0.23] [0.710 [+0.039 -0.032]
U [10 ⁻⁵] UT angles an Observable Sin 20 Sin 20 (meas. not in the fit) Sin 28 (meas. not in the fit)	3.140 [+0.069 -0.084] d sides: Central ± 1 σ -0.013 [+0.034 -0.071] -0.024 [+0.038 -0.134] D.710 [+0.011 -0.011] 0.748 [+0.030 -0.032]	±2 σ 0.013 [+0.069 -0.168] 0.024 [+0.075 -0.181] 0.710 [+0.025 -0.021] 0.748 [+0.056 -0.050]	13.14 [+0.26 -0.31] ± 3 σ -0.01 [+0.11 -0.22] -0.02 [+0.11 -0.23] 0.710 [+0.039 -0.032] 0.748 [+0.071 -0.066]

Application at: ckmlive.in2p3.frContact:ckmlive@clermont.in2p3.fr

Averaging lattice results

Collecting lattice results

- follow FLAG to exclude limited results
- supplement with more recent published results with error budget

Splitting error estimates into stat and syst

- Stat : essentially related to size of gauge conf
- Syst : fermion action, $a \rightarrow 0$, $L \rightarrow \infty$, mass extrapolations...

added linearly using error budget

"Educated Rfit" used to combine the results

- no correlations assumed
- product of (Gaussian + Rfit) likelihoods for central value
- product of Gaussian (stat) likelihoods for stat uncertainty
- syst uncertainty of the combination = most precise method
 - the present state of art cannot allow us to reach a better theoretical accuracy than the best of all estimates
 - best estimate should not be penalized by less precise methods

S. Descotes-Genon (LPT-Orsay)

CKMfitter

$|V_{ub}|$ from semileptonic *B* decays

Two ways of getting $|V_{ub}|$:

• Inclusive : $b \rightarrow u\ell\nu$ + Operator Product Expansion

[HFAG BLNP]

• Exclusive : $B \rightarrow \pi \ell \nu$ + Form factors

[J. A. Bailey et al., Fermilab-MILC]

 $|V_{ub}|_{inc} = 4.45 \pm 0.18 \pm 0.31$ $|V_{ub}|_{exc} = 3.72 \pm 0.09 \pm 0.22$

$$|V_{ub}|_{ave}$$
 = 4.01 \pm 0.08 \pm 0.22

with all values $\times 10^{-3}$

- HFAG, with theory errors added linearly
- systematics combined using Educated Rfit

Indirect det. from global fit: $|V_{ub}|_{fit} = 3.57^{+0.15}_{-0.14}$ (4%)

S. Descotes-Genon (LPT-Orsay)

CKMfitter

MITP15 - 31/8/15

Alejandro Pérez, Pérez, CKM2016 TIFR, Mumbai, Dec. 1st 2016

17

$|V_{cb}|$ from semileptonic *B* decays

Two ways of getting $|V_{cb}|$:

- Inclusive : $b \rightarrow c\ell\nu + OPE$ for moments
- Exclusive : $B \rightarrow D(^*)\ell\nu$ + Form factors

[HFAG, Gambino and Schwanda] [J. A. Bailey et al., Fermilab-MILC]

$$|V_{cb}|_{inc} = 42.42 \pm 0.44 \pm 0.74$$

 $|V_{cb}|_{exc} = 38.99 \pm 0.49 \pm 1.17$

$$|V_{cb}|_{ave}$$
 = 41.00 ± 0.33 ± 0.74

with all values $\times 10^{-3}$

- HFAG, with theory errors added linearly
- systematics combined using Educated Rfit

Indirect det. from global fit: $|V_{cb}|_{fit} = 43.0^{+0.4}_{-1.4}$ (4%)

S. Descotes-Genon (LPT-Orsay)

CKMfitter

MITP15 - 31/8/15 18

 $|V_{ub}|, |V_{cb}|$

- Information on $|V_{ub}|$ from $Br(B \rightarrow \tau \nu)$
- New LHCb result on $|V_{ub}/V_{cb}|$ from $\Gamma(\Lambda_b \rightarrow p\mu\nu)/$ $\Gamma(\Lambda_b \rightarrow \Lambda_c \mu\nu)$ at high q^2

[Detmold, Lehner and Meinel]

• Global fit favours exclusive $|V_{ub}|_{SL}$ but inclusive $|V_{cb}|_{SL}$

S. Descotes-Genon (LPT-Orsay)

CKMfitter