

Mangesh B. Borage, RRCAT, Indore

on behalf of:

B. M. Barapatre, BARC, Mumbai, S. K. Thakur, VECC, Kolkata and ECIL, Hyderabad colleagues

SERVICE

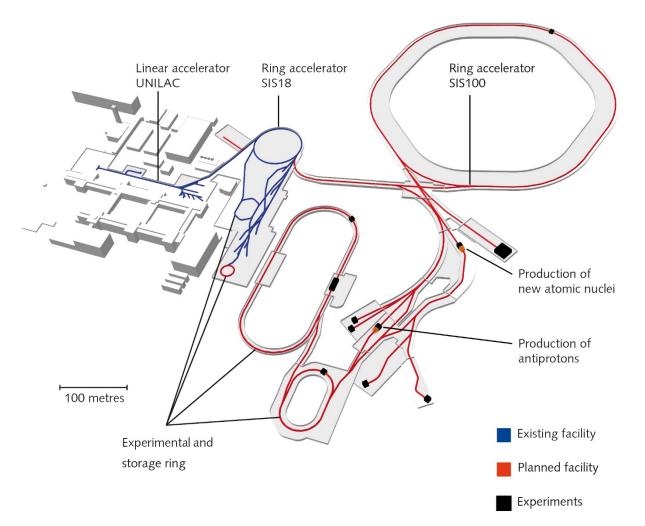
Gratitude:

Shri Debashis Das; Dr. S. Chattopadhyay; members of TCMC, Executive Council BI-IFCC, ...

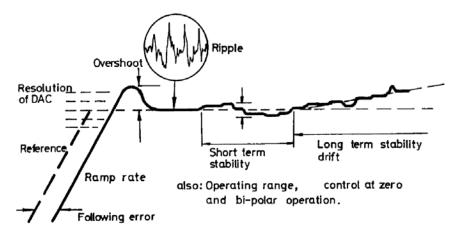
FAIR — FACILITY FOR ANTIPROTON AND ION RESEARCH

FAIR — Facility for Antiproton and Ion Research in Europe

Partner Countries:


Finland, France, Germany, **India,** Poland, Romania, Russia, Slovenia and Sweden.

- The United Kingdom is associated.
- The Czech Republic is aspirant partner.


FAIR – FACILITY FOR ANTIPROTON AND ION RESEARCH

POWERING (ELECTRO)MAGNETS

- The magnetic field depends on the current flowing through its coils.
- For stable/precisely controllable magnetic field, the current must be stable/precisely controllable.

Stability =
$$\frac{\Delta I}{I} \times 10^6$$
 [ppm]

Ref: Proc. CAS on Power Converters for Particle Accelerators, 1990

POWER CONVERTERS FOR (ELECTRO)MAGNETS SPECIALITIES...

- Load is inductive
 - Only slow changes in load resistance due to temperature
 - Load inductance helps to attenuate ripple in current
 - If di/dt is high, voltage required increases
 - Slow system proper design of control loops

Dipole, quadrupole and sextupole magnets in Indus Accelerator Complex at RRCAT, Indore

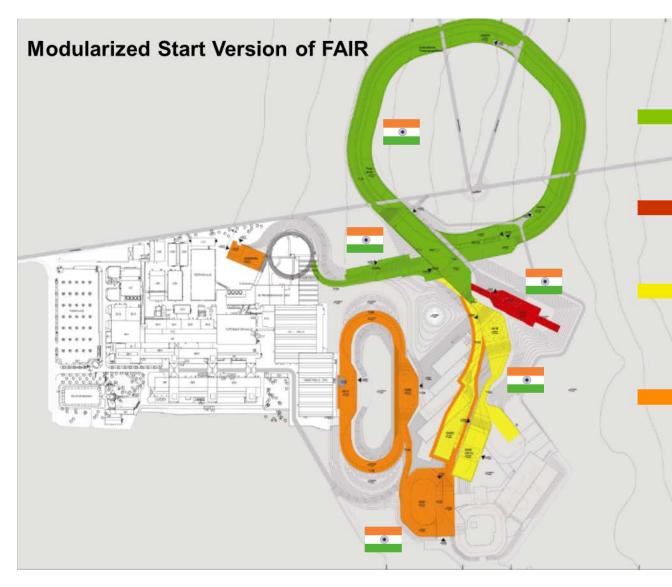
POWER CONVERTERS FOR (ELECTRO)MAGNETS SPECIALITIES...

- Stable current sensing device
- Shunt
 - Low TCR alloy (e.g. Zeranin an alloy of copper, manganese and germanium).
 - TCR 3 ppm/Deg. C

• DCCT

- Special (and proprietary component)
- Stability of output voltage is typically 1 ppm/Deg. C

POWER CONVERTERS FOR (ELECTRO)MAGNETS Specialities...


- Wide setting range of output current
 - From nearly zero to maximum, still maintaining the performance
- Different operational requirements
 - Cycling, ramping, steady state at injection/intermediate/final energy

- Few watts to few 100's of kilowatts (even MWs!)
 - Different schemes, circuits and layouts

INDIAN POWER CONVERTERS IN FAIR ACCELERATORS

Module 0 SIS 100 with connection to GSI accelerators Module 1

SIS 100 experiments

areas

Module 2 sfrs

Module 3

p-linac, antiproton targert, CR, HESR

Modules 4 (**NESR**) and 5 (**RESR**) are not marked

INDIAN POWER CONVERTERS IN FAIR ACCELERATORS

- Magnet Power Converters @ FAIR
 - Total ≈1700
 - Module $0-3 \approx 1200$
- Expression-of-Interest (EoI) from India ≈ 533
 - Covered types / ratings = 29 (HEBT, SIS100, SFRS, CR) With outputs typically in the range:

 {100 A to 850 A; 8 V to 420 V; 1 kW to 360 kW }
 Total cumulative power rating ≈ 14 MW
 'Total deviation' in output current: 100 ppm
 DC/pulsed mode; One, Two- and Four-Quadrant Operation
- In-kind contracts for 196 units (IKC-I and IKC-II)
- EoI for 140 more units (2014) and 15 more units (2019)
- Total Power Converters ~ 700

INDIAN POWER CONVERTERS IN FAIR ACCELERATORS

S.No.	PSP Code	Facility	РС Туре	Topology		Maximum Current [A]	Flat top Voltage [V]	Maximum Voltage [V]	Quantity	Covered under IKC
2	2.8.3.3.1.1		Error Comp. Quadrupole		250	300	10	38	12	Draft IKC-III
3	2.8.3.3.3.1		Error Comp.Sextupole		250	300	10	38	12	Draft IKC-III
4	2.8.3.3.5.1		1S.C4		775	850	76.16	427.52	6	
5	2.8.3.3.2.1		1S.C3		250	300	10	38	12	Draft IKC-III
6	2.8.3.4.2.1		1S.C8		250	300	10	38	166	Draft IKC-III
7	2.4.3.1.2.1		Dipol 2		246		22	138	1	
8	2.4.3.1.3.1		Dipol 3		246		18	121	7	
9	2.4.3.1.4.1		Dipol 4		200		7	215	1	
10	2.4.3.2.3.1	SuperFRS	Quadrupole 3	SM 4	292		7	69	36	
11	2.4.3.2.4.1	Superris	Quadrupole 4	51/1_4	292		7	100	21	
12	2.4.3.2.5.1		Quadrupole 5		292		7	69	4	
13	2.4.3.2.6.1		Quadrupole 6		292		7	100	1	
14	2.4.3.3.2.1		Sextupole 2		171		5	8	39	
15	2.3.3.2.16.1		HB.Q1.FBL	SM_4	271	300	87.9	142.78	6	Draft IKC-III
16	2.3.3.2.18.1		PCHBQ11	SM_4	467	525	53.55	53.55	1	Draft IKC-III
17	2.3.3.4.4.1		HB.S1.FBL	SM_4	93	100	38.7	38.7	4	Draft IKC-III
18	2.3.3.4.6.1		PCHBS2 HED	SM_4	400	400	61.2	87.9	4	Draft IKC-III
19	2.3.3.4.2.1		HB.C2	SM_4	400	400	61.2	87.9	41	Draft IKC-III
20	2.3.3.1.1.1		HB.D1	SM_1	535		90	98	3	
21	2.3.3.1.2.1		HB.D2	SM_4	535		173	210	2	
22	2.3.3.1.7.1		HB.D7	SM_4	535		200	250	1	
23	2.3.3.1.19.1		HB.D19	_SM_2	535		55	167	1	
24	2.3.3.2.1.1	HEBT	HB.Q1	SM_4	271	300	87.9	142.78	23	IKC-I
25	2.3.3.2.2.1	TILDT	HB.Q2	SM_2	271	300	87.9	142.78	50	me i
26	2.3.3.2.7.1		HB.Q7	SM_1	292		2	151	2	
27	2.3.3.2.8.1		HB.Q8	SM_1	292		2	187	9	
28	2.3.3.2.10.1		HB.Q10(*)	SM_2	455	500	51	90.53	28	
29	2.3.3.2.11.1		HB.Q11	SM_4	467	525	53.55	53.55	35	
30	2.3.3.2.12.1		HB.Q12	SM_2	455	500	89	173.84	1	
31	2.3.3.2.13.1		HB.Q13	SM_1	455	500	91.5	91.5	5	IKC-II
32	2.3.3.2.14.1		HB.Q14	SM_4	425	500	48.25	178.86	6	
33	2.3.3.4.1.1		HB.C1	SM_4	93	100	38.7	38.7	44	
34	2.3.3.2.15.1		HB.Q15(#)	SM_2	271	300	158.1	204.45	4	IKC-I
35	2.5.3.3.1.1	CR	Wide Sextupole	SM_4	116		210	212	7	4
36	2.3.3.1.1.4	HEBT	HB.D1 Zero Field Control	SM_1	535		80.6	97.8	1	4
37	2.3.3.1.6.1		HB.D6	SM_4	535		107	132	4	4
38	2.8.3.3.4.1	SIS100	1S.C2	SM_4	250		95	490	7	
40	2.8.3.5.3.1		1.S.S3	SM_1	547		25.3	30.55	1	Additional EoI
41	2.4.3.3.5.1		FR.C4	SM_4	300		16.3	16.4	36	4
42	2.4.3.4.1.1	SuperFRS	FR.C6	SM_4	300		16.3	16.4	14	4
43	2.4.3.5.2.1		FR.C8	SM_4	12.3		17.2	19.2	3	4
44	2.4.3.5.3.1		FR.C9	SM_4	12.3		18.7	20.42	21	

IKC-I	77
IKC-II	119
IKC-III	258

FAIR	Converting Converting	
CS-PC-01e Preser Core	Aures	2007

Quality Management	Hind of Document	F-05-F-01a	Dev 13.03.2014	
EDWS ID VORDER + 1	General Specification	G-FO-GM-0001 Page 1 of 1		

Title:	General Specification (General Specification for the FAIR Accelerator Facility Project)
Purpose:	Common rules and definitions
Organizational unit:	FAIR@GSI Project Coordination – Configuration Management (PCCM) FAIR Technical Division
Valid for:	FAIR Accelerator Facility Project
Key performance indicators:	

EDMS ld: 1365092 v.1

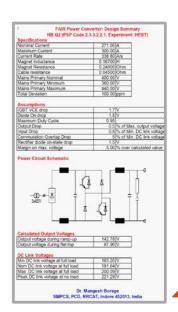
The document describes Common Specifications for the Power Converter for the FAIR Accelerator Project.

Common Specs.

Electrical conditions Environmental conditions Definitions Design Principles Reliability Factory Acceptance Tests Site Acceptance Tests Transportation Documentation

Quality Management	Document Type	P-DS-PC-134	Date 15-02-2017	
FAROESSA	Detailed Specification	G-PO-GM-0005	Fage 1 + 21	

Document Title	Power Converters for SIS100 Steering Magnets
Description	This document describes detailed specifications of power converters for SIS100 Steering Magnets
Division/ Organization:	GSI-EPS
Field of Application:	Project FAIR@GSI


Document History

Versen	Preparet los	Chested Dela	Released, 24%	Contract .
184	V Physion, A De les Paulles 83.06.2016	H Welver, 10 30 2019		Daff Venue
¥82	V Plyann, A 36.52,2018	n Walter K.H. Toyon, HEP12017		Dell Version
+++	V. Physican, A. De las Vesilias 17 (1.3017	F. Greaner, 30.01,2017 F. Senarguter, 23-02,2017 R. Spiller, 20.54 (2017	D. Crotetta, 27 UI 2017 B. Roterfolder, D. D. 2017	Free Residen
¥2.9	V. Prosent.		P. Sale: 2101211	Second Version
1 I V	V Provini.			Sec. 3.4 append Sec. 4.5 optime

Detailed Specs. Scope Content of delivery Technical specs. Spares Interfaces Documentation

General Specs. Legal Requirements Standards Internal Regulations Quality Control Safety Guidelines

Baseline Design Preliminary design for simulations and studies **RRCAT**, Indore BARC, Mumbai VECC, Kolkata

Pre-prototype Development

Proof-of-principle

- 1. Functional description of all the components;
- Explanation of design criteria according to Sec. 8.5 of [2]; 2.
- Technical data; 3.
- 4. Block diagrams:
- 5. Manufacturer/type of all main components;
- Description of interface (control interfaces and interfaces to the environment); 6.
- 7. Simulation of the operation modes given in the corresponding detailed specification;

convent Title Concept Design Document - Power Conventor HB/Q2 (2 3 3 2 2 1) for PAIR A GRUE OF CORPORATION OF INDIA LIMITED A GRUE OF AGRUE OF A GRUE OF A CONTROL OF A CONTROL OF A ADVANCE OF A CONTROL OF A ADVANCE OF A CONTROL OF A

> FAIR POWER CONVERTER CONCEPT DESIGN DOCUMENT HB.O2 (2.3.3.2.2.1)

ABSTRACT locument summarizes design calculations of the RR-Q2 power ter (2.3.3.2.2.1) for FAIR, which is a two quadrant converter rand

Dee Sign

2011/2014 57-0

FAIR/ECIL/PS/23.3.2.2.1 (HIL/02//PROTO/CDR v1.1

Report (CDR)

Conceptual Design

15110014 INTERNA A

sifully Baig

Sec.

27.11.2014

03. 12 Zel

- 8. Draft version of the production plan;
- 9. Test concept to ensure testability during FAT and SAT;
- 10. Definition of the critical components which are operated on the verge of or beyond to their specification limits;

11. Draft version of the Risk / Hazard Assessment.

First-of-Series (FoS) Prototype

Final Design Review (FDR)

- 1. A description of the complete power converter;
- Detailed specification of all main components (technical and mechanical data) (i.e. Cabinet, transformer, inductor, capacitor bank, arrangement of semiconductors, placement of DCCT-head);
- Drawings or preferably 3D-models of the physical configuration of the complete power converter (components placement inside the cabinet);
- 4. Block diagrams and schematics of the control loops;
- 5. Complete schematics of all the electrical circuits;
- Complete specification of all the interfaces (electrical, mechanical, building, media, software, etc.);
- 7. List of recommended spare parts;
- Provision of design and production documents (production plan, quality plans, work instructions and test instructions);
- 9. Test plans and templates of test protocols for FAT and SAT;

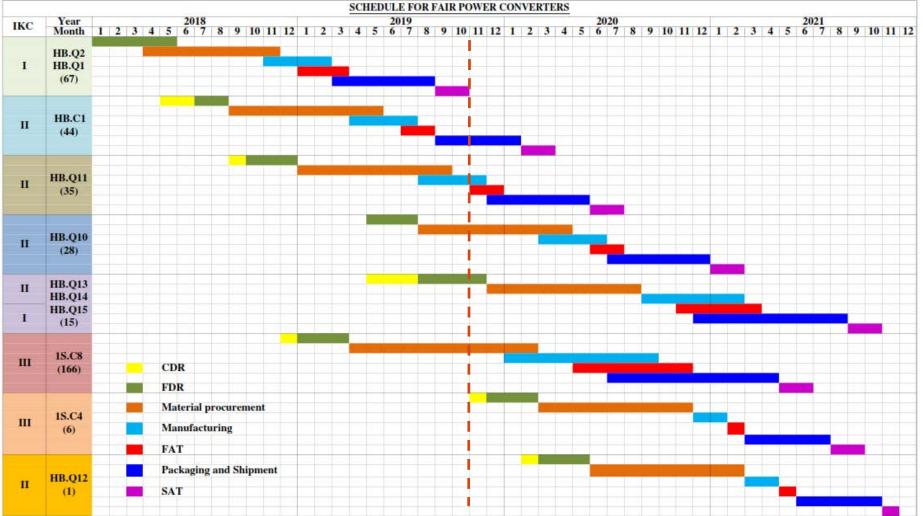
Engineering Design RRCAT, Indore BARC, Mumbai VECC, Kolkata In collaboration with ECIL, Hyderabad

Factory Acceptance Test (FAT) of FoS Prototype &

Clearance for Batch Production

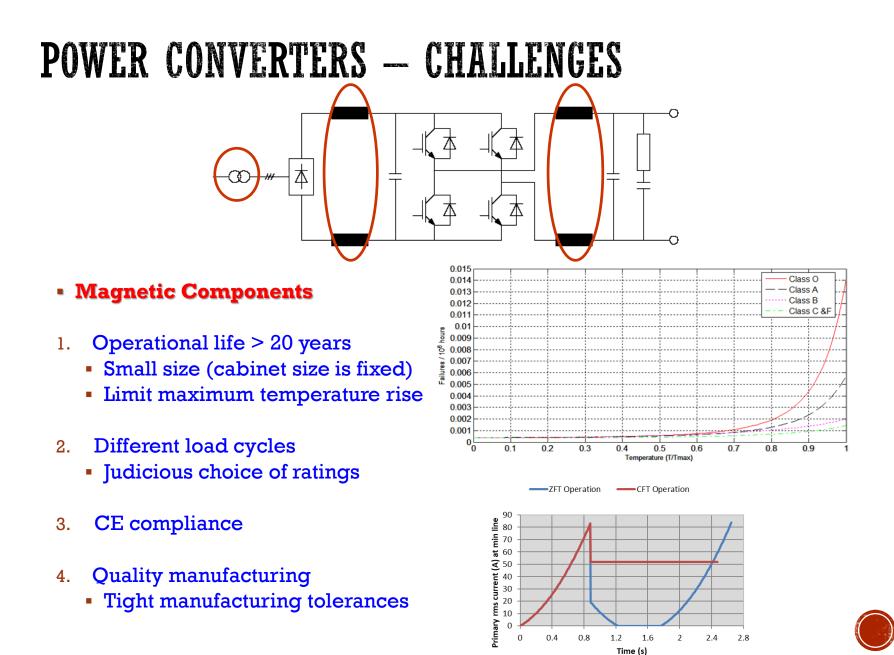
Production & FAT

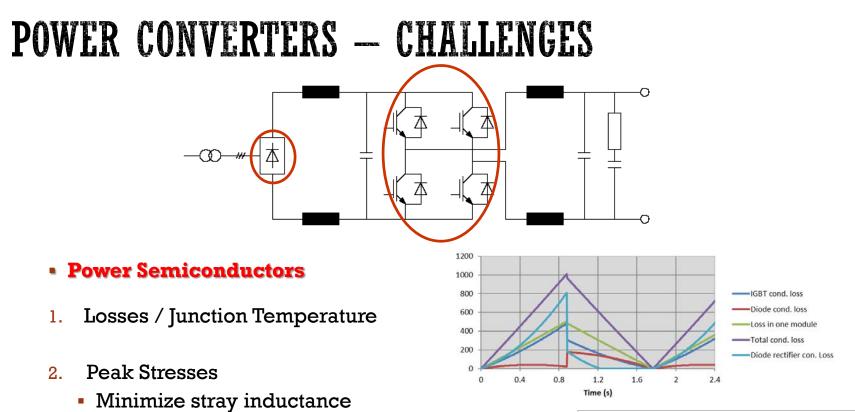
1

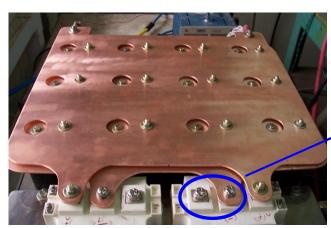


Dispatch and Transportation

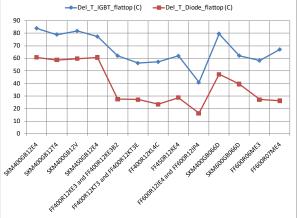
Installation and Commissioning Site Acceptance Test (SAT)

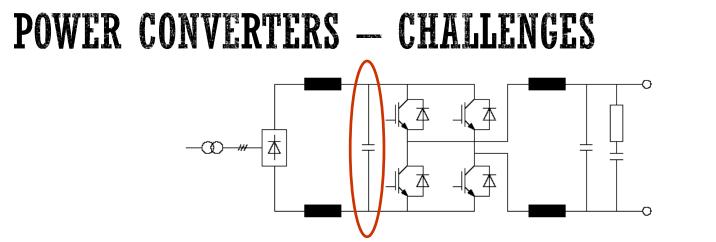

POWER CONVERTERS — TIGHT SCHEDULE!

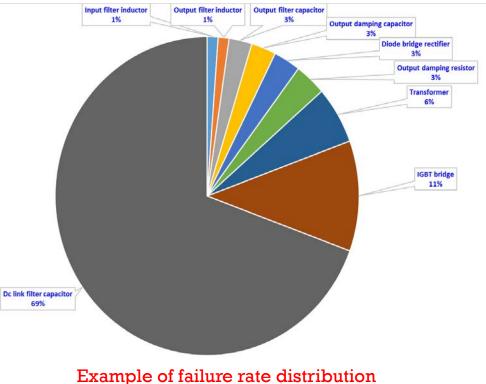


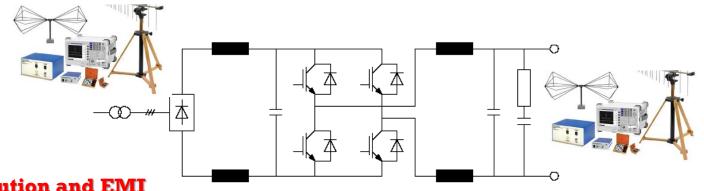


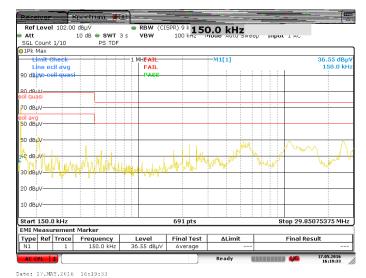
- <u>A large number of high-power converters</u>
 - Live and dynamic systems
 - Operating continuously
 - Direct implication on the delivery of beam
- 1. High reliability
- 2. Easy maintainability
- 3. Standardization (less variety in inventory)
- 4. Quality manufacturing
- 5. Extensive testing
- 6. Conformance to various regulatory standards
- 7. Tight deadlines



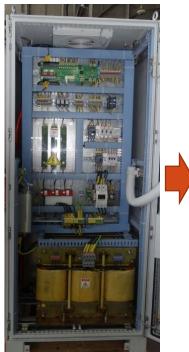








- Electrolytic Capacitors
- Component with least life (and unfortunately they are many in a power converter!)
- 2. Proper design and de-rating
- 3. Multiple functions:
 - Filtering
 - Absorb magnet energy



- Harmonic pollution and EMI
- 1. Rectifier is a non-linear load generates line frequency harmonics, which need to be kept below a prescribed limit
- Switching circuits → EMI
 → need to be kept below a prescribed limit
- 3. Special measures

Maintaining Manufacturing Quality

- 1. A detailed manufacturing document (~ 150 pages)
 - 12 manufacturing stages
 - Minutest details (e.g. wire routes, types of hardware, tightening toques etc.)
 - Procedures and precautions
- 2. Training of the working team
- 3. 100% inward inspection of components
- 4. Stage-wise inspection and reporting
- 5. Final quality check and reporting
- 6. Standard test templates
- 7. Automated testing and report generation with minimum operator intervention
- 8. Burn-in test of 100% units to thermal stabilization
- 9. Special type tests on 10% of the quantity
- Detailed archive of test results (power converters and components)

Prototype

Product

POWER CONVERTERS – STATUS

Power converters for HB.Q2 and HB.Q1 magnets (HEBT) @ FAIR

Specifications	•		Γ	
Nominal Current	271.00	А	Ϊ /	73 N
Maximum Current	300.00	А		101
Current Rate	338.80	A/s		
Magnet Inductance	0.16700	Н	1	
Magnet Resistance	0.24800	Ohm	1	
Cable resistance	0.04500	Ohm	1	
Mains Primary Nominal	400.00	V	1	
Mains Primary Minimum	360.00	V	1	
Mains Primary Maximum	440.00	V		
Total Deviation	100.00	ppm		

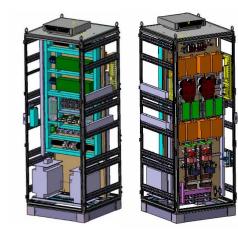
- Designed and pre-prototype developed at RRCAT, Indore
- Series Production at ECIL, Hyderabad
- Delivered !

os.

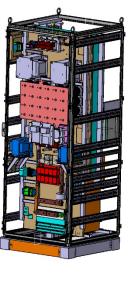
First in-kind contribution to FAIR from India

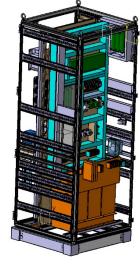
POWER CONVERTERS — STATUS

Power converters for HB.C1 magnets (HEBT) @ FAIR


Specifications			
Nominal Current	93.00	А	48 Nos.
Maximum Current	100.00	А	
Current Rate	232.5000	A/s	
Magnet Inductance	0.0510	Н	
Magnet Resistance	0.2520	Ohm	
Cable resistance	0.1350	Ohm	
Mains Primary Nominal	400.00	V	
Mains Primary Minimum	360.00	V	
Mains Primary Maximum	440.00	V	
Total Deviation	100.00	ppm	

- Designed and pre-prototype developed at RRCAT, Indore
- Series production and testing progressing well ECIL, Hyderabad
- Completion expected in mid-November

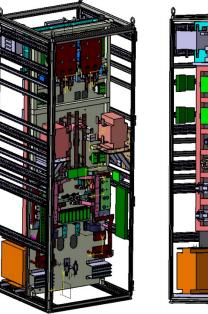

POWER CONVERTERS – STATUS

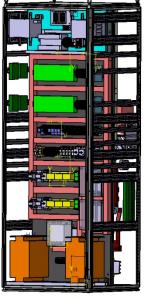


Power converters for HB.Q11 magnets (HEBT) @ FAIR

Specifications			
Nominal Current	467.00	А	
Maximum Current	525.00	А	
Current Rate	50.0000	A/s	
Magnet Inductance	0.0910	Н	1
Magnet Resistance	0.0810	Ohm	
Cable resistance	0.0210	Ohm	
Mains Primary Nominal	400.00	V	
Mains Primary Minimum	360.00	V	
Mains Primary Maximum	440.00	V	
Total Deviation	100.00	ppm	

36 Nos.




- Designed at BARC, Mumbai
- First-of-series prototype manufactured and tested at ECIL, Hyderabad
- Series production to commence soon

POWER CONVERTERS — STATUS

Power converters for 1S.C8 magnets (SIS100) @ FAIR

Nominal Current	250.00	А
Maximum Current	300.00	А
Current Rate	1250.0000	A/s
Magnet Inductance	0.0220	Н
Magnet Resistance	0.0000	Ohm
Cable resistance	0.0420	Ohm
Mains Primary Nominal	400.00	V
Mains Primary Minimum	360.00	V
Mains Primary Maximum	440.00	V
Total Deviation	100.00	ppm

- Designed at VECC, Kolkata
- Manufacturing of first-of-series prototype to commence at ECIL, Hyderabad

202 Nos.

OPPORTUNITIES FOR INDUSTRIES

- Manufacturing possibilities
 - High power magnetic components
 - Precisely machined mechanical items (bus plates, heat sinks, special connectors for coaxial power cables, etc.)
 - Cabinets
 - Electrical / electronics components
 - PCBs, component assembly

• • • •

- Participate in FAIR Call for Tenders
 - FAIR website https://fair-center.eu/en/fair-gmbh/in-kind-procurement
 - BI-IFCC website http://www.jcbose.ac.in/bifcc-announcement

IN-KIND COMPONENTS FROM INDIA

- Accelerator components
 - Power converters (~700 nos.)
 - UHV Chambers (~100 nos.)
 - Beam stoppers (~ 3 nos.)
 - Coaxial power cable (~180 km)
 - SC magnets for LEB
- Detector Components
 - Spectrometer
 - Neutron detector
 - Ion-trap
 - Muon chambers

Power converter

Vacuum Chamber

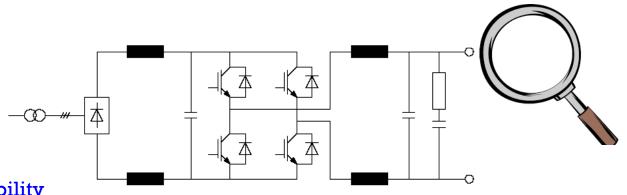
Coaxial Cable

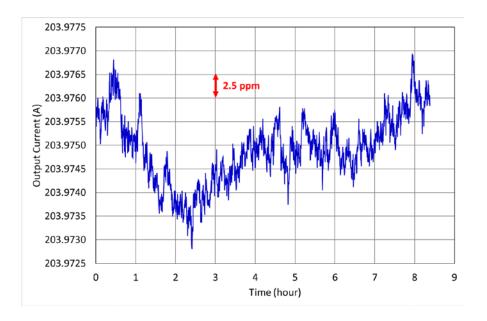
Beam Stopper

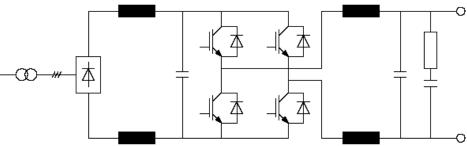
Stranded copper conductor

Ref: S. Chattopadhyay, Indian Industry in FAIR', Vigyan Samagam, Mumbai

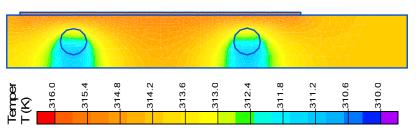
SUMMARY

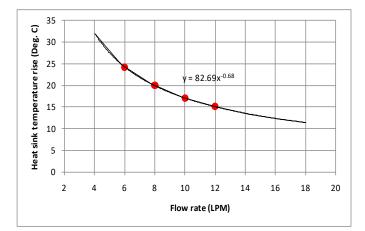

- A new technological avenue has opened up at FAIR for Indian industries
- All Indian in-kind items are being developed and built in India
- Indian industries participating for in-kind items urge to explore the non in-kind items also.
 - Build/strengthen manufacturing capabilities
 - Contributions towards upcoming mega-projects in India
- Power converters for electromagnets is one of the major inkind contribution for FAIR
 - Delivery started
 - Presents opportunities for many industries


THANK YOU!



Output Current Stability





- Cooling the Semiconductors
- 1. Water cooling!
- 2. Tight mechanical specifications (surface finish and flatness)
- 3. Durable assembly
- 4. Extensive thermal simulations

