

Supersymmetry searches at CMS

Keith Ulmer University of Colorado for the CMS collaboration

SUSY Mumbai, TIFR, December 2017

SUSY at the LHC

- As Paris told us on Monday, SUSY discovery was easy
 - Prescription: look for high p_T particles and large missing energy and you can't miss it

The prevailing wisdom from the good old days:

- SUSY discovery (should be) easy and fast
 - Expect very large yield of events in clean signatures (dilepton, diphoton).
 - Establishing mass scale is also easy (M_{eff})
- Squarks and gluinos can be discovered over very large range in SUGRA space (M₀,M_{1/2})~(2,1)TeV
 - Discovery of charginos/neutralinos depends on model
 - Sleptons difficult if mass > 300 GeV

So what happened?

2010:

2011:

2012:

SUSY at the LHC

- Despite lack of observation, have made huge of progress in SUSY searches
 - Generally very inclusive searches with broad reach
 - Sophisticated analysis techniques, robust background predictions, comprehensive interpretation techniques, searching further in kinematic tails, ...

See Parallel Talks: Tom Cornelis, Vinay Hegde, Scarlet Norberg, Daniel Spitzbart, Leonora Vesterbacka

Some paths forward

- The era of large jumps in energy or luminosity is over (for awhile!)
- This talk: My view of ways to push beyond the inclusive SUSY searches
 - Digging deeper: Boosted and long-lived signatures
 - More targeted corners: Compressed spectra, RPV
 - Lower cross sections: Electroweak production

Digging Under Background

- SUSY can give a remarkably wide range of potential signatures
 - Essentially anything from the SM + missing energy
 - Have recent and ongoing searches in just about every combination imaginable
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Digging Under Background

• Traditional approach is to look in extreme tails of kinematic distributions

- But signals could be hiding in the bulk with lower rates
- Another option is to use new unique signatures to beat down backgrounds in these cases
- Will give two examples from canonical multi-jet signals

Boosted Object Tagging

- High p_T H→bb decay with small opening angle
- Use large angle jets to capture full Higgs decay
- Identify Higgs tags by presence of two displaced subjets
- Jet mass shows clear peaking structure

CMS-SUS-17-006

Boosted Higgs Search

- Select events with 1 or 2 Higgs tags and large missing energy
 - 2 AK8 jets with $p_T > 300 \text{ GeV}$
 - ♦ MET > 300 GeV
- Backgrounds predicted from mass and bb-tag sidebands in data
- Interpret in gluino decay model with mass splittings that give high p_T Higgs bosons

Long-lived SUSY decays

CMS-EXO-16-003 arXiv: 1711.09120

- Search for events with jets displaced from the beamline
- Jets reconstructed from calorimeters only
- Use tracks within ∆R < 0.4 to tag jets as displaced
 - Ex. Impact parameter significance of the tracks
 - ◆ Jet tagging eff. ~60% for cτ = 3 cm
 - Mis-id rate ~0.05%
- Search for events with 2 or ≥3 tagged displaced jets

Results from displaced jets

Very low backgrounds from good displaced jet ID

$rac{N_{\mathrm{tags}}}{2} \ge 3$	Expected 1.09 ± 0.16 $(4.9 \pm 1.0) \times 10^{-4}$	Observed 1 0	$\begin{bmatrix} \mathbf{E} \\ \mathbf{E} $	¹⁰ pper limit at 95% CL [fb]
 Interpret in a long-lived stop scenario decaying to a b-jet and a lepton 		ved stop o a b-jet and a	10 400 600 800 1000 120	h 8 4 × 10 10 10

See Parallel Talks: Luca Pernie

m_ç [GeV]

 2.6 fb^{-1} (13 TeV)

Targeting Corners

- Broad inclusive searches can leave gaps in sensitivity in challenging regions
 - Dedicated searches extend and complete the coverage

Compressed Stop

- Compressed scenario with small
 Δm(stop,LSP) proceeds through off-shell
 W
 - Results in low p_T decay products
 - Target this signature with soft leptons
- Rely on events with large ISR boost for sizeable MET
- Search in both 1L and 2L channels
 - p_T(μ[−]): 3.5 − 30 GeV
 - p_T(e⁻): 5 − 30 GeV
- Backgrounds: W+jets, 1L/2L tt, Z->tau,tau
 - From MC normalized to data in control regions

Compressed Stop

- Variety of signal regions binned in lepton p_T, MET, m_T(I,MET), m(II) to capture large and small mass splittings
- Stop masses excluded up to ~600 GeV for ∆m(stop,LSP)
 < m(W)
 - Results shown for combination of OL and 1L searches

Compressed Higgsino

- Soft dilepton search also sensitive to Higgsino production
- Difficult scenario with light Higgsino multiplet and other SUSY decoupled
- First new limits since LEP

See Parallel Talks: Henning Kirschenmann, Navid Rad

R-parity violation

CMS-SUS-16-040

- Missing energy is the hallmark of a "SUSY" search
 - Has served us well, but can potentially blind us to other possibilities
- RPV multi-b analysis searching in tails of high nJet and high nB multiplicity
 - Trigger on single jet or HT (no MET requirement)
 - ◆ HT > 1200 GeV, nJet ≥ 4, nB ≥ 1, MJ > 500 GeV
 - One isolated e^- or μ^-
- Fit the nB distribution in categories of nJet and MJ

R-Parity violation

Getting to lower cross sections

 Abundance of LHC data now allows targeting electroweak SUSY production

Stau Production

CMS-SUS-17-003

- Target direct stau pair production in 2τ + MET final state
 - ◆ 2 isolated hadronically decaying taus with p_T > 40 GeV
 - Main discriminating variable: Sum of transverse mass from tau candidates
 - Veto events with e^{-}/μ^{-}
 - Other tau decay channels will be complementary
- Main backgrounds from QCD multi-jet and W+jets
 - Fake had tau background measured in data from loose isolation sideband

Stau Production Limits

- No excess
 observed in 3
 signal regions
- Set 95% CL upper limits on di-stau cross section
- Limits not quite to expected cross section (1.5x SM)
- Significant dependence on stau polarization

Higgsino Search

CMS-SUS-16-044 arXiv: 1709.04896

- Search for direct production of EW-inos in decays to Higgs bosons
- Utilize largest Higgs branching fraction to bb
- Select candidates with 2 pairs of bjets with mass consistent with the Higgs
- Search regions binned in MET starting with >150 GeV
- Background measured in data from 2b and Higgs mass sidebands
 - Mostly from tt

Higgsino Search

- Observation consistent with SM expectation
- Set limits on Higgsino mass from 230 770 GeV in a gauge mediated scenario with 100% BF to Higgs

Electroweak Summary

- Wide range of EW-ino production and decays possible
- Search sensitivity generally at lower masses than strong production

CMS SUSY Summary

- Wide array of complementary searches to cover possible signature space
- Increasingly probing more dedicated corners and specialized signatures to complement broad inclusive searches
- Searches are adding creativity on top of well established techniques, but alas no signs of new physics yet

Extra Slides

SOS Higgsino limits

- Limits from SUS-16-048
 - Wino production cross section

Supersymmetry

- SUSY offers eloquent solutions to many pressing issues in the SM
 - Natural cancelation of Higgs mass divergences
 - DM candidate with stable lightest SUSY particle (LSP)
 - Potential gauge coupling strength unification
- The experimentalist's note:
 - "SUSY" used as a proxy for a broader class of new physics models
 - Ex. Search for production of any new particles decaying to stable DM
 - Alternatively, see Henning Flacher for pure DM production

An Experimentalist's Playground

Rich spectrum can be broken down into individual signatures

The Experimentalist's Challenge

- SUSY production buried under mountain of SM background
- Goal to accurately measure SM contributions in regions where new physics may have significant contributions
- This talk:
 - Give flavor of where we search and how we measure SM backgrounds
 - Can't possibly cover all results...

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

SUSY 2017 - K. Ulmer