Status of Weak scale SUSY and interpretation of data

Michihisa Takeuchi (Kavli IPMU, Univ. of Tokyo)

at SUSY2017 (TIFR, Mumbai) on 13th Dec 2017

Two big problems in particle physics

Weak scale SUSY elegantly solve both problems

gauge coupling unification also suggests new states at TeV

SUSY search results at LHC 13TeV with ~ 36 fb-1

SM Higgs and no heavy higgses

Higgs couplings measured consistent to SM Higgs in 10-20%

it is also the MSSM prediction in decoupling limit also there are some 10-20% room for deviation

Heavy higgs searches

For large $\tan\beta$, $A\to\tau\tau$ dominates

Unlike a general 2HDM, MSSM Higgs sector can be parameterized with $(m_A, \tan \beta)$

 \rightarrow Light higgs coupling measurements already constrain $m_A\gtrsim 400 {\rm GeV}$

interesting interference effect with tt continuum BG → Dip search

[S.Martin, PhysRevD.86 (2102)073016, Phys.Rev. D88 (2013)013004]
[S.Jung, J. Song, Y.-W. Yoon Phys.Rev. D92 (2015) no.5]
[A. Djouadi, J. Ellis, J. Quevillon JHEP 1607 (2016) 105]
[M. Carena, Z. Liu JHEP 1611 (2016) 159]

Null results from DM Direct Detection experiments

 $\tan \beta = 20$ $\tilde{B} - \tilde{H}$ mixture 5000 $\log_{10} \sigma_{31}$ [cm² $\Omega_{\chi}^{(\hat{m})} = \Omega_{obs}$ $\log_{10} \sigma_{\text{SD}-p} [\text{cm}^2]$ M_1 [GeV] 1000 -41.4 40 Chyy 100LL -5000 -1000-100 100 1000 5000 μ [GeV]

Typically, spin independent cross section in MSSM

$$10^{-44} \sim 10^{-47} \mathrm{cm}^2$$

Not yet fully excluded but remaining regions are mainly pure states, blind spots, co-annihilation

No signature of SUSY anywhere yet

No evidence at LHC, Higgs measurement, Direct-Detection...

Is it meaning weak SUSY dead? Maybe not.

Where to hide?

just heavy, just above the current search reaches

compressed spectrum - compatible to co-annihilation - consistent to null DM-DD result if DM is dominantly Bino RPV, Stealth SUSY [J. Fan, M. Reece, J. Ruderman]

 $(g-2)\mu$: Hint for low scale new physics?

 $\begin{aligned} a_{\mu}(\exp) &= (11\,659\,208.9 \pm 6.3) \times 10^{-10} \\ a_{\mu}(\mathrm{SM}) &= \begin{cases} (11\,659\,182.8 \pm 4.9) \times 10^{-10} & [\text{K. Hagiwara, R. Liao, A. D. Martin, D. Nomura, T. Teubner}] \\ (11\,659\,180.2 \pm 4.9) \times 10^{-10} & [\text{M. Davier, A. Hoecker, B. Malaescu, Z. Zhang}] \end{cases} \\ \text{at least three of } \tilde{B}, \tilde{H}, \tilde{\mu}_{L}, \tilde{\mu}_{R} \text{ must be } \mathcal{O}(100\,\mathrm{GeV}) \end{aligned}$

global fit with pMSSM11

Liklihood analysis of pMSSM11 [arXiv:1710.11091: E. Bagnaschi, et. al]

11 param. : $M_{1,2,3}, m_{\tilde{q}}, m_{\tilde{q}_3}, m_{\tilde{\ell}}, m_{\tilde{\ell}_3}, A, \mu, m_A, \tan \beta$ LHC, B-physics, Higgs, EWPO, DM, with/without $(g-2)_{\mu}$

interestingly, without $(g - 2)_{\mu}$ prefer lighter mass spectrum (heavy DM and compressed) DM co-annihilation processes important. heavy or compressed spectrum favored: Is it fine tuning? 6

$$\begin{split} -\mathcal{L}_{\rm SM} &= -\mu^2 H^{\dagger} H \qquad \mu : \text{only dimension full parameter} \sim 100 \,\text{GeV} \qquad \text{d=2} \\ &+ \mathcal{L}_{\rm kin} + g A_{\mu} \bar{f} \gamma^{\mu} f + y_{ij} \bar{f}_i H f_j + \lambda (H^{\dagger} H)^2 \qquad \text{d=4} \end{split}$$

$$\begin{split} -\mathcal{L}_{\rm SM} &= -\epsilon \Lambda^2 H^{\dagger} H \qquad \mu : \text{only dimension full parameter} \sim 100 \,\text{GeV} \qquad \text{d=2} \\ &+ \mathcal{L}_{\rm kin} + g A_{\mu} \bar{f} \gamma^{\mu} f + y_{ij} \bar{f}_i H f_j + \lambda (H^{\dagger} H)^2 \qquad \text{d=4} \end{split}$$

$$\begin{split} -\mathcal{L}_{\rm SM} &= -\epsilon \Lambda^2 H^{\dagger} H \qquad \mu : \text{only dimension full parameter} \sim 100 \,\text{GeV} \qquad \text{d=2} \\ &+ \mathcal{L}_{\rm kin} + g A_{\mu} \bar{f} \gamma^{\mu} f + y_{ij} \bar{f}_i H f_j + \lambda (H^{\dagger} H)^2 \qquad \text{d=4} \end{split}$$

7

$$-\mathcal{L}_{\rm SM} = -\epsilon\Lambda^2 H^{\dagger}H \qquad \text{μ: only dimension full parameter \sim 100 GeV} \qquad d=2$$

$$+\mathcal{L}_{\rm kin} + gA_{\mu}\bar{f}\gamma^{\mu}f + y_{ij}\bar{f}_{i}Hf_{j} + \lambda(H^{\dagger}H)^{2} \qquad d=4$$

$$+\frac{b_{ij}}{\Lambda}(LH)(LH) + \frac{c_{ij}}{\Lambda}(\bar{f}_{i}\sigma_{\mu\nu}f_{j})G^{\mu\nu} + \frac{c_{ijkl}}{\Lambda^{2}}(\bar{f}_{i}f_{j})(\bar{f}_{k}\bar{f}_{l}) \qquad d>4$$
fine tuning
fine tuning
natural
natural
$$HC_{\rm B} = \frac{100 \, {\rm GeV} + 1 \, {\rm TeV} + 10 \, {\rm TeV} + 10$$

7

We likely just start to explore natural parameter space (or we didn't expect we have anything at such low scale)				
Further tuning is welcome:	10/*000/			
fine tuning found \rightarrow more chance to go beyond	1% 99% II			
natural parameter found \rightarrow few chance to reveal underlining theory	99%*1%			

problem is the observed Higgs mass

before higgs discovery, MSSM successfully predicts $m_h \lesssim 130 {
m GeV}$ unless stops are not too heavy This is one of the collateral evidences of the SUSY

We likely just start to explore natural parameter space (or we didn't expect we have anything at such low scale)				
Further tuning is welcome:	10/ *000/			
fine tuning found \rightarrow more chance to go beyond	1% 99% II			
natural parameter found \rightarrow few chance to reveal underlining theory	99%*1%			

What we expect next?

top contribution is the largest among radiative corrections in Higgs mass

$$\rightarrow$$
 light stop $\delta m_h^2 \sim \frac{\tilde{t}}{y_t^2} \sim -\frac{3}{4\pi} y_t^2 \Lambda^2$

problem is the observed Higgs mass

before higgs discovery, MSSM successfully predicts $m_h \lesssim 130 {
m GeV}$ unless stops are not too heavy This is one of the collateral evidences of the SUSY On the other hand, to obtain 125 GeV from the formula:

$$m_h^2 = m_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} y_t^2 m_t^2 \sin^2 \beta \left[\log \frac{m_S^2}{m_t^2} + X_t^2 \left(1 - \frac{X_t^2}{12} \right) \right] + \dots$$

We need **heavy** or light but **highly mixed** stops $5 \sim 10 \text{ TeV}$ m_S as low as 600 GeV m_{t_1} as low as 200 GeV

We likely just start to explore natural parameter space (or we didn't expect we have anything at such low scale)				
Further tuning is welcome: fine tuning found → more chance to go beyond natural parameter found → few chance to reveal underlining theory 99% ³				

What we expect next?

top contribution is the largest among radiative corrections in Higgs mass

$$\rightarrow$$
 light stop $\delta m_h^2 \sim \frac{\tilde{t}}{y_t^2} \sim -\frac{3}{4\pi} y_t^2 \Lambda^2$

problem is the observed Higgs mass

before higgs discovery, MSSM successfully predicts $m_h \lesssim 130 {
m GeV}$ unless stops are not too heavy This is one of the collateral evidences of the SUSY On the other hand, to obtain 125 GeV from the formula:

$$m_h^2 = m_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} y_t^2 m_t^2 \sin^2 \beta \left[\log \frac{m_S^2}{m_t^2} + X_t^2 \left(1 - \frac{X_t^2}{12} \right) \right] + \dots$$

We need **heavy** or light but **highly mixed** stops $5 \sim 10 \text{ TeV}$ m_S as low as 600 GeV m_{t_1} as low as 200 GeV

Further, light stops require some tuning to avoid S,T,U and Higgs couplings constraints to reproduce higgs mass → stop blind spot

$$\mathcal{L}_{\text{eff}} = \left(y_t^2 - \frac{y_t^2 X_t^2}{m_{\tilde{t}_h}^2 - m_{\tilde{t}_l}^2} \right) \left| H_u \right|^2 \left| \tilde{t}_l \right|^2. \quad X_t^* = \left(m_{\tilde{t}_h}^2 - m_{\tilde{t}_l}^2 \right)^{1/2}.$$

[J. Fan, M. Reece, L-T Wang]

no one can guarantee next new physics looks no fine tuned

We likely just start to explore natural parameter space (or we didn't expect we have anything at such low scale)			
Further tuning is welcome:	1%*99%		
fine tuning found → more chance to go beyond	॥		
natural parameter found → few chance to reveal underlining theory	99%*1%		

Natural SUSY

[M. Papucci, J. T. Ruderman, A. Weiler]

natural spectrum: light higgsino200-350 GeVlight stop500-700 GeVnot too heavy gluino900-1500 GeV

How natural? the current status of natural SUSY ?

[arXiv: 1610.08059, M. R. Buckley, D. Feld, S. Macaluso, A. Monteux, D. Shih]

Effective SUSY: 1st/2nd squarks decoupled

(A=100Te)

1500

Gluino mass [GeV]

2000

2500

3000

1000

500

500

$$\Delta = \max_{M_i} \Delta_{M_i^2} \qquad \Delta_{M^2} = \frac{\partial \log m_h^2}{\partial \log M^2}$$

Higgsinos:

$$\delta m_{H}^{2}=\mu^{2}$$

important to take the mass correlation into account heavy \tilde{g} imply heavy \tilde{t} , vice versa more natural neither \tilde{g} nor \tilde{t} observed than one observed

$\Delta \leq 10$ still ok

10

At the search frontier, additional care must be taken very heavy region: boosted top reconstruction compressed region: mono-jet, soft-leptons

What changes with a boost?

roughly speaking 1 TeV stop provide 500 GeV pT tops

With a boost, jets from top decay start to be overlapping

HEPTopTagger Algorithm

define fatjet C/A, R=1.5 to capture 200 GeV tops
 look for subjets by mass drop

3. select paring with filtered mass closest to top mass $|m_{ijj}^{\text{filt}} - m_t| < 25 \text{ GeV}$

4. mass ratio check (top kinematics consistency)

3 subjets:
$$p_1, p_2, p_3 \to m_{12}, m_{13}, m_{23}$$

 $m_t^2 \simeq m_{123}^2 \simeq m_{12}^2 + m_{13}^2 + m_{23}^2 \to 2D$ mass ratios

JHEP 1010:078,2010. arXiv:1006.2833 [hep-ph] [T. Plehn, M. Spannowsky, MT, D. Zerwas]

At the search frontier, additional care must be taken very heavy region: boosted top reconstruction compressed region: mono-jet, soft-leptons

Stop search (compressed region)

compressed mass spectrum

 $m_{\tilde{t}} \sim m_{\chi}$

mono-jet search: sensitive to this region

however, the same signal expected for whatever with a degenerate spectrum

gluino, squark, other simplified model, for whatever sensitive http://arxiv.org/pdf/1409.2893.pdf 15

mono-jet search

(ATLAS-CONF-2015-062) (1605.03814) ATLAS-CONF-2016-078

however, the same signal expected for whatever with a degenerate spectrum

gluino, squark, other simplified model, for whatever sensitive http://arxiv.org/pdf/1409.2893.pdf 15

mono-jet search

Advantage

whatever particles degenerate with DM can be probed

robust prediction based on QCD (only depends on mass, color, spin)

Disadvantage

whatever particles degenerate with DM can be probed

= we cannot distinguish among the particles assumption

Once we see the signal, advantage turn out to become disadvantage we propose an interesting process to solve this degeneracy

SUSY ttH process $\tilde{t}^* t \tilde{h}_u^0$

[D. Goncalves, K. Sakurai, MT arXiv:1604.03938]

$$y_t T_R H_u Q_{3L}$$
 in super potential $\rightarrow y_t h \bar{t} t$
 $\rightarrow y_t \tilde{t}_R \tilde{h}_u t_L, y_t t_R \tilde{h}_u \tilde{t}_L$

Non trivial relation due to SUSY, this measurement could be the first confirmation of SUSY $\sigma(\tilde{t}^*\tilde{t})$ only probes gauge coupling (not necessarily from SUSY) just QCD gauge principle can explain

Mono-top in compressed stop

[D. Goncalves, K. Sakurai, MT arXiv:1604.03938]

b →sγ

light stop, light higgsino naturally initiate $b \rightarrow s \gamma$

[H. Baer, V. Barger, N. Nagata, S. Michael, PRD 95, 055012 (2017)]

compressed spectrum require a tuning based on their measure

 Δ_{EW}

We should have observed some deviation $m_{\tilde{t}} < 500 \text{GeV}$ and if not tuned.

EWikino as thermal relic

EWkino search strategies at LHC

	$\Delta m = m_{NLSP} - m_{LSP}$		
T	$\Delta m > m_Z, m_W$	$E_T + 3\ell$	$\chi_2^0 \to \chi_1^0 Z, \chi_1^\pm \to \chi_1^0 W^\pm$
nassa idiiina ainii	$0.2 { m GeV} < \Delta m < m_W$	$j^{\text{ISR}} + \!$	$\chi_{2}^{0} \rightarrow \chi_{1}^{0} \ell^{+} \ell^{-} \text{ via } Z^{*}$ [Z. Han, G. Kribs, A. Martin, A. Menon] $\chi_{2}^{0} \rightarrow \chi_{1}^{0} \gamma \text{ (1-loop)}$ [J. Bramante, A. Delgado, F. Elahi, A. Martin, B. Ostdiek] [C. Han, L. Wu, J-M. Yang, M. Zhang, Y. Zhang]
		$j^{1010} + E_T$ (mono-jet)	too soft decay products
ł	$\Delta m < 0.2 { m GeV}$	Disappearing tracks $+j^{\mathrm{ISR}}+{\not\!$	long-lived χ^{\pm}

Main targets: 1.1TeV Higgsino, 3 TeV Wino, but even with 100TeV collider would be difficult would be covered Bino-Wino mixed case [J. Bramante, P. J. Fox, A. Martin, B. Ostdiek, T. Plehn, T. Schell, MT]

Tracker upgrade and aggressive analysis at HE-LHC might reach 1.1 TeV pure Higgsino by DT [H. Fukuda N. Nagata, H. Otono, S. Shirai, arXiv:1703.09675]

EWkino search via loop at HL-LHC

Summary

Naturalness: we probably just start to explore the natural parameter space finally not surprising either we find/don't find SUSY soon lots of opportunities at LHC

important targets :

scalar top \rightarrow important to check the coupling relations (SUSY relation from superpotential, $t\tilde{t}\tilde{\chi}$) boosted technique degenerate region \rightarrow mono-jet, mono-top for additional information $b \rightarrow s \gamma$

EWkinos → being thermal relic set upper bound, require co-annihilation partners degeneracy → soft-leptons, mono-jet, long-lived particles (disappearing track, displaced vertex) loop correction possibly detectable at HL-LHC

Anywhere SUSY below Planck scale better than no-SUSY, thermal relic set upper bound 23