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Very Special Relativity (VSR)

• The speed of light is a universal constant, 
same in all frames of reference

• This does not really imply that the 
fundamental symmetry group is the Lorentz 
group

• It only leads to a subgroup, which may be  
HOM(2), SIM(2)   (Cohen and Glashow 2006)



SIM(2)

• SIM(2): T1, T2, Jz, Kz

T1 = Kx-Jy, T2 = Ky+Jx

J:  rotations
K:  boosts

[T1, T2] = 0,             [Jz,Kz] = 0
[Jz, T1] = iT2 ,       [Jz, T2] = -iT1
[Kz, T1] = iT1 ,       [Kz, T2] = iT2

Translations are preserved in VSR



Transformation to rest frame

• We can make a HOM(2) (T1, T2, Kz ) 
transformation to the rest frame of a particle

• Several consequences of Lorentz invariance, such 
as,  

Law of velocity addition
time dilation
universal maximal velocity

remain preserved



Relationship with P, T, CP (CT)

• VSR is possible as long as P, T, CP (or CT) are 
all violated

• If any one of these discrete symmetries are 
imposed we get back the full Lorentz group



Dispersion Relations

• Particle Dispersion relations do not get 
modified  E2 = P2 + M2

• This is in contrast to other models of Lorentz 
violation, perhaps arising from quantum 
gravity effects

• Hence many constraints based on such 
effects do not apply



Effective Lagrangian approach to VSR

• We assume that Lorentz violating effects are 
small

• We can express these in terms of effective 
interactions, added to the Standard Model



VSR Effective Lagrangian

nµ = (1,0,0,1) ; D = gauge covariant derivative

This is invariant under VSR transformations. Either 
nµ does not change or the change cancels out

The term is non-local. This appears to be necessary

Leads to mass of fermions as well as interactions 
with gauge bosons



VSR Effective Lagrangian

• Similar VSR terms are also present in gauge 
and scalar sector

Cohen and Glashow 2006
Dunn and Mehen 2006
Alfaro et al 2015



VSR Mass term

The nonlocal term provides a mass term for 
neutrinos.

All fermions get a correction term to mass

On-shell:  P2 = m2 + m1
2



VSR Mass term
Also leads to different masses for left and right 
handed particles. 

Stringent limits on such left-right mass difference 
for electron. 

We impose C invariance to eliminate this mass 
difference. 

Requires fine tuning
Dunn and Mehen 2006
Fan, Goldberger, Skiba 2006



Pion/Kaon Decay

• We consider charged pion/kaon decay within 
VSR in order to study this phenomena

• Similar effects are expected in all processes



Pion Decay
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Leads to standard decay rate

The hadronic current is proportional to qµ , the 
pion momentum



Lorentz Violating VSR term

+ h.c.

Such an effective term arises if we assume a 
VSR quark mass term 

In VSR the hadronic current can also have an 
additional piece proportional to nµ



Decay Amplitude

• The dominant contribution comes from the 
interference between the VSR and the 
standard term

q= pion momentum
p = muon momentum
k = neutrino momentum



Pion Decay in rest frame

• We cannot make a Lorentz transformation in 
order to go to the rest frame of pion

• However we do this by making a HOM(2) 
transformation 

• Under this transformation nµ changes by 
overall constant which cancels out in the 
amplitude



Pion Decay in rest frame

• We choose a frame such that nµ = (1,0,0,1) up 
to an irrelevant constant

y

x

z
p muon momentum

θ

We find that dΓ/dΩ
depends on θ



Limit on g

• We first impose a limit on g by demanding 
that the correction due to VSR is smaller than 
the error in the total decay rate

• g < g0,   g0 = 2.1×10−12 GeV



Anisotropic muon distribution

• The final state muon distribution is not 
isotropic, depends on θ



Anisotropic muon distribution



Pion decay in laboratory frame

• We consider a beam of pions moving along z’ 
axis with momentum q 

xyz, frame S: In this frame
nµ = (1,0,0,1)

x’y’z’, frame S’: standard 
lab frame

Use rotational invariance 
about z to align x’ in x-z plane



Azimuthal dependence In lab frame

• Final state muon distribution picks up an 
azimuthal φ’ dependence in lab frame

• Define 



Azimuthal dependence

E = 200 MeV
θ= π/4
Peaks at φ’= π



Daily Variation

• The angle θ between preferred axis and beam 
changes with time due to Earth’s rotation

• ⇒periodic variation of dΓ/dΩ with a time 
period of 1 sidereal day

• Sidereal day is a day relative to fixed stars 
rather than the Sun. It is a little shorter than 
solar day



Coordinates
Assume observer at latitude λ

z’, z’’ : Beam axis
x”y”z”: Lab coordinates
y” = local normal

x’y’z’: also lab coordinates 
with x’ in z-z’ plane

Z = rotation axis
z= preferred axis



Daily Variation

• Due to change in θ the magnitude of dΓ/dΩ
will change periodically with time

• Due to change in orientation of the beam 
relative to preferred axis, the peak position in 
the azimuthal distribution would also show a 
correlated change with time



Time dependence of θ and β

λ=30 deg
θp= 0.4π
φp= 0.3π
α=0.1π

t0 = 1 sidereal day



Experimental Proposal

• We propose to test the angular dependences 
and daily variation experimentally

• These will arise in many processes, both 
involving decay as well as collision



Experimental Proposal

• We divide a sidereal day into several bins 
• For each time bin, divide data into bins in 

azimuthal angle 
• Collect data in each bin over many days
• Determine the azimuthal dependence of final 

state particles for each time bin
• The peak position should show time dependence 

with a period of 1 sidereal day
• Correlated with this the amplitude should also 

vary with the same period



Experimental Proposal

• Furthermore polar angle dependence should 
also time dependence with a period of a 
sidereal day



Conclusions

• VSR is an interesting theoretical proposal
• Here we have shown that it leads to time and 

azimuthal angle dependence of final state 
particles which can be tested experimentally
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Azimuthal distribution

• In x’y’z’ system the peak in φ’ distribution 
occurs at π

• the lab x”y”z” is related to x’y’z’ system by a 
rotation −β about the common z’, z” axis

• Hence the peak in this system occurs at  
φ”=π−β

• We need the time dependence of θ and β



Time dependence of θ and β

• We use the astronomical equatorial 
coordinate system XYZ

• Relate the preferred coordinates xyz to XYZ, 
assume preferred axis at θp , φp

• Also relate lab coordinates x”y”z” to XYZ. This 
gives us the variation of lab coordinates with 
time

• Hence we can find time dependence of θ and 
β
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