Verification of pairwise non-locality trade-off in pure symmetric 3-qubit states using the IBM open access quantum computer

Humera Talat, A R Usha Devi

Department of Physics, Bangalore University, Jnanabharathi, Bengaluru-560056, India

Sudha, B P Govindaraja

Department of Physics, Kuvempu University, Shankaraghatta-577129, India.

Majorana construction of 3-qubit pure 2-qubit reduced state of $\left|\Psi_{3,2}^{A B C}\right\rangle$ symmetric state with 2 distinct spinors

$$
\begin{aligned}
\rho_{\mathrm{R}} & =\operatorname{Tr}_{A}\left(|\Psi\rangle_{\text {sym }}\langle\Psi|\right)=\operatorname{Tr}_{B}\left(|\Psi\rangle_{\text {sym }}\langle\Psi|\right) \\
& =\operatorname{Tr}_{C}\left(|\Psi\rangle_{\text {sym }}\langle\Psi|\right)
\end{aligned}
$$

$$
\left|\Psi_{3,2}^{A B C}\right\rangle=\mathcal{N}_{3,2} \sum_{P} \hat{P}\{|0\rangle \otimes|0\rangle \otimes|\beta\rangle\}, \quad|\beta\rangle=\cos \frac{\beta}{2}|0\rangle+\sin \frac{\beta}{2}|1\rangle, 0<\beta<\pi
$$

$$
\begin{array}{rlrl}
=\frac{1}{\sqrt{2+\cos \beta}}\left(\sqrt{3} \cos \frac{\beta}{2}\left|0_{A} 0_{B} 0_{C}\right\rangle+\sin \frac{\beta}{2}|\mathrm{~W}\rangle\right) . & \rho_{\mathrm{R}} & =\frac{1}{4}\left[I \otimes I+\sum_{i=1}^{3} s_{i}\left(\sigma_{i} \otimes I+I \otimes \sigma_{i}\right)\right. \\
& \left.+\sum_{i, j=1}^{3} t_{i j}\left(\sigma_{i} \otimes \sigma_{j}\right)\right] \\
|\mathrm{W}\rangle=\mathcal{N} \sum_{P} \hat{P}\{|0\rangle \otimes|0\rangle \otimes|1\rangle\} & s_{i} & =\operatorname{Tr}\left[\rho_{R}\left(\sigma_{i} \otimes I\right)\right]=\operatorname{Tr}\left[\rho_{R}\left(I \otimes \sigma_{i}\right)\right] \\
= & t_{i j} & =\operatorname{Tr}\left[\rho_{R}\left(\sigma_{i} \otimes \sigma_{j}\right)\right]=t_{j i}
\end{array}
$$

$$
\sigma_{i}, i=1,2,3 \text { are the Pauli matrices; } I \text { denotes } 2 \times 2 \text { identity matrix }
$$

Bell-CHSH Inequality

$\langle\mathrm{CHSH}\rangle_{A B}=\left\langle A_{1} \otimes B_{1}\right\rangle+\left\langle A_{1} \otimes B_{2}\right\rangle+\left\langle A_{2} \otimes B_{1}\right\rangle-\left\langle A_{2} \otimes B_{2}\right\rangle$ $\left\langle A_{i} \otimes B_{j}\right\rangle=\operatorname{Tr}\left[\rho_{A B} A_{i} \otimes B_{j}\right], A_{i}=\vec{\sigma} \cdot \vec{a}_{i}, B_{j}=\vec{\sigma} . \vec{b}_{j}, \quad i, j=1,2$ Pauli observables with orientation directions \vec{a}_{i}, \vec{b}_{j} of qubits A, B.

$$
T=\frac{1}{3(2+\cos \beta)}\left(\begin{array}{ccc}
1-\cos \beta & 0 & 3 \sin \beta \\
0 & 1-\cos \beta & 0 \\
3 \sin \beta & 0 & 4+5 \cos \beta
\end{array}\right)
$$

$\left\langle A_{i} \otimes B_{j}\right\rangle=\sum_{a_{i}, b_{j}= \pm 1} a_{i} b_{j} p\left(a_{i}, b_{j} \mid A_{i}, B_{j}\right), \quad i, j=1,2$.
Correlation probabilities evaluated based on the measurement outcomes a_{i}, b_{j} of the observables A_{i}, B_{j} of Alice and Bob

Absolute values

$$
\left|t_{1}\right| \geq\left|t_{2}\right| \geq\left|t_{3}\right|
$$

$$
\begin{aligned}
& t_{1}=\frac{5+4 \cos \beta+3 \sqrt{5+4 \cos \beta}}{6(2+\cos \beta)} \\
& t_{2}=\frac{1-\cos \beta}{3(2+\cos \beta)} \\
& t_{3}=\frac{5+4 \cos \beta-3 \sqrt{5+4 \cos \beta}}{6(2+\cos \beta)} .
\end{aligned}
$$

$$
\begin{gathered}
\text { Maximum value }\langle\mathrm{CHSH}\rangle_{\mathrm{opt}} \\
\langle\mathrm{CHSH}\rangle_{\mathrm{opt}}=2 \sqrt{t_{1}^{2}+t_{2}^{2}} \\
t_{1}^{2}, t_{2}^{2} \Longrightarrow \text { two largest eigenvalues of } T^{\dagger} T
\end{gathered}
$$

Monogamy trade-off relation in the case of 3-qubit states
Monogamy constraint imposes the trade-off relation
$\mathfrak{M}_{A B C} \equiv\langle\boldsymbol{C H S H}\rangle_{A B}^{2}+\langle\boldsymbol{C H S H}\rangle_{B C}^{2}+\langle\boldsymbol{C H S H}\rangle_{A C}^{2} \leq 12$

3-qubit permutation symmetric states

$$
\langle C H S H\rangle_{A B}=\langle C H S H\rangle_{B C}=\langle C H S H\rangle_{A C}
$$

$$
\mathfrak{M}_{A B C}=3\langle C H S H\rangle_{A B}^{2} \leq 12
$$

CHSH Monogamy relation

Any arbitrary 2-qubit state extracted from 3-qubit permutation symmetric system cannot violate CHSH inequality, even though the constituent qubits are entangled.

Verification of monogamy relations using open access IBM quantum computer ibmq_lima

* Using IBM open-source software kit Qiskit we initialize the 3-qubit state $\left|\Psi_{3,2}\right\rangle$ for $\beta=\pi / 6, \pi / 4,{ }^{3 \pi / 8},{ }^{9 \pi / 16}, \pi$.
* Recording measurement data on the 2-qubit reduced density matrices and construction of correlation matrix T
* Experimental verification of monogamy relation $\mathfrak{M}_{A B C} \leq 12$

Measurements of Pauli gates X, Y and Z

Rotation for X Measurement

Rotation for Y Measurement

Measurement of the X or Y Pauli matrices requires application of unitary rotation operation so as to rotate the X - or Y -axis to be the Z -axis.

X measurement

Measurement on qubits 1 \& 2: Counts for $\beta=\pi / 4$ (ibmq_lima) Total number of trials: 8192

$$
T_{12}^{\text {Exptl }}=\left(\begin{array}{ccc}
0.0315 & 0.03686 & 0.2216 \\
0.0288 & 0.07348 & 0.105 \\
0.11987 & 0.1586 & 0.7807
\end{array}\right) ; t_{1}^{\text {Exptl }}=0.7149, t_{2}^{\text {Exptl }}=0.0027
$$

$\langle\text { CHSH }\rangle_{A B}^{E x p t l}=1.6943, \mathfrak{M}_{A B C}^{E x p t l}=9.2728 ; \quad\langle\text { CHSH }\rangle_{A B}^{T h}=1.9987, \mathfrak{M}_{A B C}^{T h}=11.9855$

Total number of measurements for each $\boldsymbol{\beta}: \mathbf{2 7}$

β	qubit pairs	$t_{1,2}^{\text {Exptl }}$	$t_{1,2}^{T h}$	$\mathfrak{M r}_{\text {ABC }}^{\text {Exptl }}$	$\mathfrak{M}_{A B C}^{T h}$
$\frac{\pi}{6}$	12	0.8035, 0.0148	0.9997, 0.0155	9.3071	11.9972
	23	0.6908,0.0252			
	13	0.7752,0.0170			
$\frac{\pi}{4}$	12	0.7149, 0.0027	0.9987, 0.0360	9.2728	11.9855
	23	0.8063,0.01688			
	13	0.7526,0.0246			
3π	12	0.8143, 0.0129	0.9930, 0.0860	8.9751	11.9242
	23	$0.6818,0.02534$			
8	13	0.6612,0.0480			
	23	0.8264, 0.0302			
	13	0.8483,0.0520			
16	12	0.6342, 0.06255	$0.9586,0.2207$	8.4692	11.6100
	23	$0.6115,0.0688$			
	13	$0.6951,0.0455$			
	23	0.5677,0.1243			
	13	$0.5956,0.1297$			
π	12	$0.3936,0.3125$	$0.4444,0.4444$	8.04924	10.6667
	23	$0.3268,0.2607$			
	13	$0.3950,0.3236$			

Conclusion: Shareability places restrictions on CHSH non-locality.

References

1. J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics 1, 195 (1964)
2. J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, Proposed experiment to test local hiddenvariable theories, Phys. Rev. Lett. 23, 880 (1969)
3. H. -H. Qin, S. -M. Fei, X. Li-Jost, Trade-off relations of Bell violations among pairwise qubit systems, Phys. Rev. A 92, 062339 (2015)
4. K. Anjali, S. H. Akshata, H. S. Karthik, S. Sahu, Sudha, A. R. Usha Devi, Characterizing nonlocality of pure symmetric three-qubit states, Quantum Information Processing, 20, 18 (2021)
5. IBM quantum computing platform (2019). https://quantum-computing.ibm.com/

Acknowledgements

ARU \& Sudha are supported by the Department of Science and Technology (DST), India, through Project No. DST/ICPS/QuST/Theme-2/2019 (Proposal Ref. No. 107)

Thank youl

