

Verification of pairwise non-locality trade-off in pure symmetric 3-qubit states using the IBM open access quantum computer

Humera Talat, A R Usha Devi

Department of Physics, Bangalore University, Jnanabharathi, Bengaluru-560056, India Sudha, B P Govindaraja

Department of Physics, Kuvempu University, Shankaraghatta-577129, India.

Majorana construction of 3-qubit pure symmetric state with 2 distinct spinors

2-qubit reduced state of $|\Psi_{3,2}^{ABC}\rangle$

$$\rho_{\rm R} = \operatorname{Tr}_A \left(|\Psi\rangle_{\rm sym} \langle \Psi| \right) = \operatorname{Tr}_B \left(|\Psi\rangle_{\rm sym} \langle \Psi| \right)$$
$$= \operatorname{Tr}_C \left(|\Psi\rangle_{\rm sym} \langle \Psi| \right)$$

 σ_i , i = 1, 2, 3 are the Pauli matrices; I denotes 2×2 identity matrix

Bell-CHSH Inequality

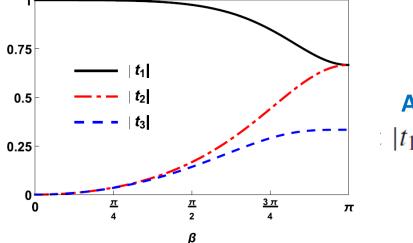
 $\langle CHSH \rangle_{AB} = \langle A_1 \otimes B_1 \rangle + \langle A_1 \otimes B_2 \rangle + \langle A_2 \otimes B_1 \rangle - \langle A_2 \otimes B_2 \rangle$

 $\langle A_i \otimes B_j \rangle = Tr[\rho_{AB}A_i \otimes B_j], A_i = \vec{\sigma}. \vec{a}_i, B_j = \vec{\sigma}. \vec{b}_j, i, j = 1, 2$ Pauli observables with orientation directions \vec{a}_i, \vec{b}_j of qubits A, B.

$$\langle A_i \otimes B_j \rangle = \sum_{\substack{a_i, b_j = \pm 1 \\ a_i, b_j = \pm 1 \\ evaluated based on the \\ measurement outcomes \\ a_i, b_j \text{ of the observables } A_i, B_j$$
, $i, j = 1, 2.$

Maximum value (CHSH)_{opt}

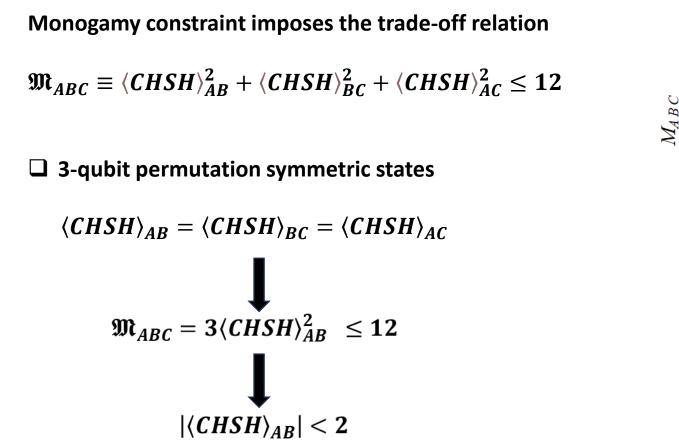
$$\langle \text{CHSH} \rangle_{\text{opt}} = 2\sqrt{t_1^2 + t_2^2}$$

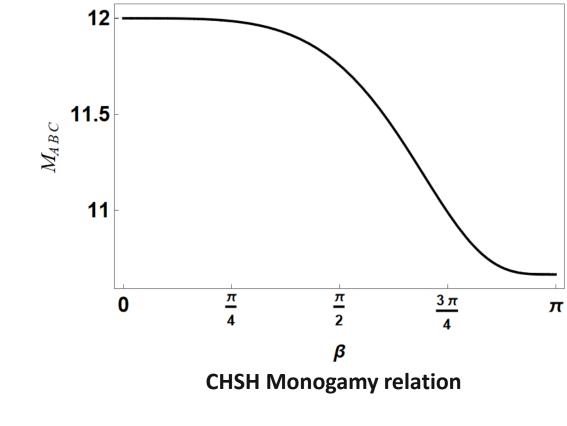

 $t_1^2, t_2^2 \implies$ two largest eigenvalues of $T^{\dagger} T$

02-07-2023

Correlation matrix of ρ_R

$$T = \frac{1}{3(2+\cos\beta)} \begin{pmatrix} 1-\cos\beta & 0 & 3\sin\beta\\ 0 & 1-\cos\beta & 0\\ 3\sin\beta & 0 & 4+5\cos\beta \end{pmatrix}$$


$$t_{1} = \frac{5 + 4\cos\beta + 3\sqrt{5 + 4\cos\beta}}{6(2 + \cos\beta)}$$
$$t_{2} = \frac{1 - \cos\beta}{3(2 + \cos\beta)}$$
$$t_{3} = \frac{5 + 4\cos\beta - 3\sqrt{5 + 4\cos\beta}}{6(2 + \cos\beta)}.$$

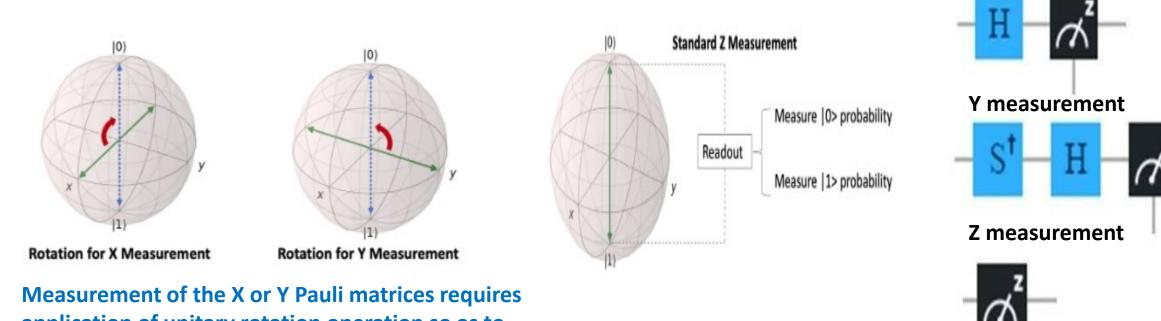


Absolute values $|t_1| \ge |t_2| \ge |t_3|$

3

Monogamy trade-off relation in the case of 3-qubit states

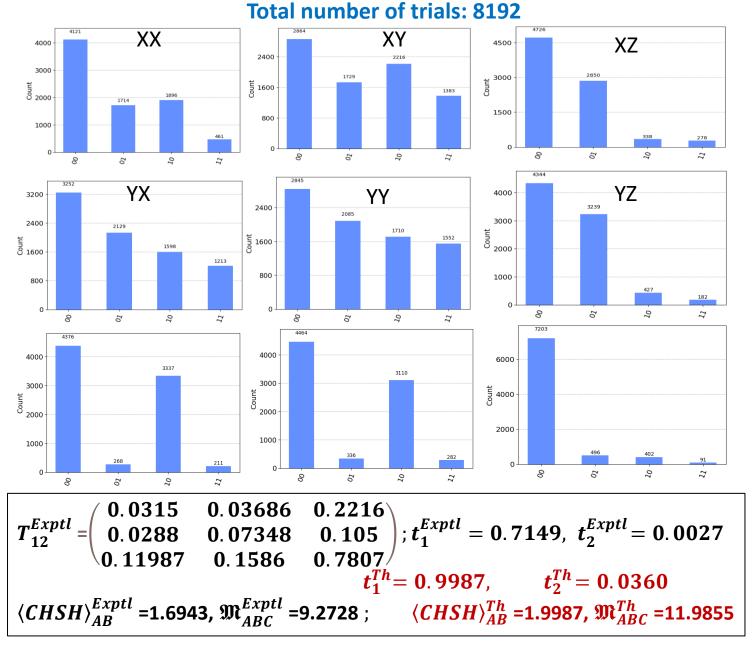
Any arbitrary 2-qubit state extracted from 3-qubit permutation symmetric system cannot violate CHSH inequality, even though the constituent qubits are entangled.


Verification of monogamy relations using open access IBM quantum computer ibmq_lima

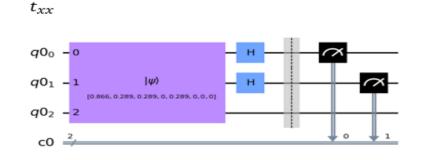
X measurement

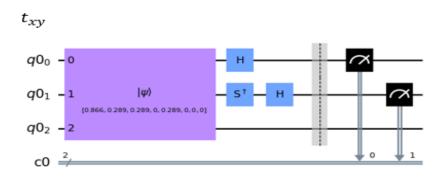
• Using IBM open-source software kit Qiskit we initialize the 3-qubit state $|\Psi_{3,2}\rangle$

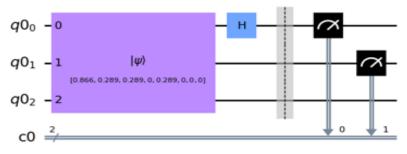
for $\beta = \pi/_6$, $\pi/_4$, $3\pi/_8$, $9\pi/_{16}$, π .


- Recording measurement data on the 2-qubit reduced density matrices and construction of correlation matrix T
- ***** Experimental verification of monogamy relation $\mathfrak{M}_{ABC} \leq 12$

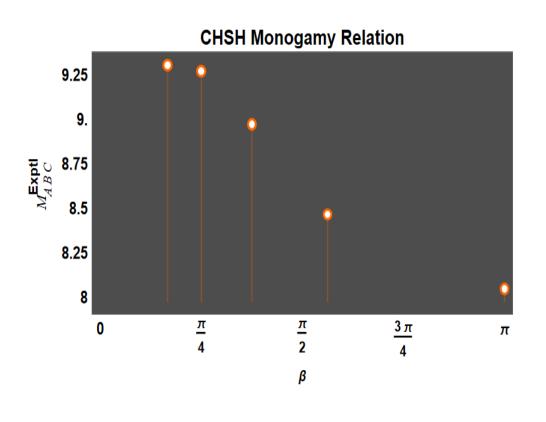
Measurements of Pauli gates X, Y and Z


Measurement of the X or Y Pauli matrices requires application of unitary rotation operation so as to rotate the X - or Y –axis to be the Z-axis.


02-07-2023


Measurement on qubits 1 & 2: Counts for $\beta = \pi/4$ (ibmq_lima)

Total number of measurements for each meta: 27



β	qubit pairs	$t_{1,2}^{Exptl}$	$t_{1,2}^{Th}$	$\mathfrak{M}^{Exptl}_{ABC}$	\mathfrak{M}^{Th}_{ABC}
$\frac{\pi}{6}$	12	0.8035, 0.0148			
	23	0.6908,0.0252	0.9997, 0.0155	9.3071	11.9972
	13	0.7752,0.0170			
$\frac{\pi}{4}$	12	0.7149, 0.0027			
	23	0.8063,0.01688	0.9987, 0.0360	9.2728	11.9855
	13	0.7526,0.0246			
$\frac{3\pi}{8}$	12	0.8143, 0.0129			
	23	0.6818,0.02534	0.9930, 0.0860	8.9751	11.9242
	13	0.6612,0.0480			
	23	0.8264, 0.0302			
	13	0.8483,0.0520			
9π	12	0.6342, 0.06255			
	20	0.6115,0.0688	0.9586, 0.2207	8.4692	11.6100
16	13	0.6951,0.0455			
	23	0.5677,0.1243			
	13	0.5956,0.1297			
π	12	0.3936, 0.3125			
	23	0.3268,0.2607	0.4444, 0.4444	8.04924	10.6667
	13	0.3950,0.3236			

Conclusion: Shareability places restrictions on CHSH non-locality.

References

- 1. J. S. Bell, On the Einstein–Podolsky–Rosen paradox, Physics 1, 195 (1964)
- 2. J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, Proposed experiment to test local hiddenvariable theories, Phys. Rev. Lett. 23, 880 (1969)
- 3. H. -H. Qin, S. -M. Fei, X. Li-Jost, Trade-off relations of Bell violations among pairwise qubit systems, Phys. Rev. A 92, 062339 (2015)
- 4. K. Anjali, S. H. Akshata, H. S. Karthik, S. Sahu, Sudha, A. R. Usha Devi, Characterizing nonlocality of pure symmetric three-qubit states, Quantum Information Processing, 20, 18 (2021)
- 5. IBM quantum computing platform (2019). <u>https://quantum-computing.ibm.com/</u>

Acknowledgements

ARU & Sudha are supported by the Department of Science and Technology (DST), India, through Project No. DST/ICPS/QuST/Theme-2/2019 (Proposal Ref. No. 107)

