

Rusa Mandal Institute of mathematical sciences, Chennai

on arXiv: 1603:04355

with Rahul Sinha, Thomas E. Browder, Abinash Kr. Nayak & Anirban Karan.

November 28, 2016

Outline

Introduction

Model Independent Framework

• Evidence of New Physics

Summary

Introduction

Introduction

Angular analysis in well known helicity frame [Kruger, Sehgal, Sinha, Sinha '99]

The differential distribution $\frac{d^4\Gamma(B\to K^*\ell^+\ell^-)}{dq^2\,d\cos\theta_l\,d\cos\theta_k\,d\phi}$

 $= \frac{9}{32\pi} \Big[I_1^s \sin^2 \theta_K + I_1^c \cos^2 \theta_K + (I_2^s \sin^2 \theta_K + I_2^c \cos^2 \theta_K) \cos 2\theta_l + I_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi \\ + I_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + I_5 \sin 2\theta_K \sin \theta_l \cos \phi + I_6^s \sin^2 \theta_K \cos \theta_l \\ + I_7 \sin 2\theta_K \sin \theta_l \sin \phi + I_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + I_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \Big]$

$I_i = \text{short distance} + \text{long distance}$

 $I_i = \text{short distance} + \text{long distance}$

Wilson coefficients: perturbatively calculable

 $I_i = \text{short distance} + \text{long distance}$

Wilson coefficients: perturbatively calculable

> Form-factors: non-perturbative estimates from LCSR, HQET, Lattice ... *tremendous effort since past*

no quantitative computation

Challenge: either estimate accurately or *eliminate*

The amplitude $\mathcal{A}(B(p) \to K^*(k)\ell^+\ell^-)$

[RM, Sinha, Das '14]

$$= \frac{G_F \alpha}{\sqrt{2\pi}} V_{tb} V_{ts}^* \left[\left\{ C_9 \left\langle K^* | \bar{s} \gamma^\mu P_L b | \bar{B} \right\rangle - \frac{2C_7}{q^2} \left\langle K^* | \bar{s} i \sigma^{\mu\nu} q_\nu (m_b P_R + m_s P_L) b | \bar{B} \right\rangle \right. \\ \left. - \frac{16\pi^2}{q^2} \sum_{i=\{1-6,8\}} C_i \mathcal{H}_i^\mu \right\} \bar{\ell} \gamma_\mu \ell + C_{10} \left\langle K^* | \bar{s} \gamma^\mu P_L b | \bar{B} \right\rangle \bar{\ell} \gamma_\mu \gamma_5 \ell \right]$$

The amplitude $\mathcal{A}\left(B(p) \to K^*(k)\ell^+\ell^-\right)$ [R]

[RM, Sinha, Das '14]

$$= \frac{G_F \alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^* \left[\left\{ \frac{C_9}{\sqrt{K^*}} |\bar{s}\gamma^{\mu}P_L b|\bar{B}\rangle - \frac{2C_7}{q^2} \langle K^* |\bar{s}i\sigma^{\mu\nu}q_{\nu}(m_bP_R + m_sP_L)b|\bar{B}\rangle - \frac{16\pi^2}{q^2} \sum_{i=\{1-6,8\}} C_i \mathcal{H}_i^{\mu} \right\} \bar{\ell}\gamma_{\mu}\ell + C_{10} \langle K^* |\bar{s}\gamma^{\mu}P_L b|\bar{B}\rangle \bar{\ell}\gamma_{\mu}\gamma_5\ell \right]$$

Wilson coefficients

The amplitude $\mathcal{A}\left(B(p) \to K^*(k)\ell^+\ell^-\right)$

[RM, Sinha, Das '14]

CKM 2016, TIFR

with form-factors \mathcal{X}_{i} , \mathcal{Y}_{j}

The amplitude $\mathcal{A}\left(B(p) \to K^*(k)\ell^+\ell^-\right)$

[RM, Sinha, Das '14]

$$= \frac{G_F \alpha}{\sqrt{2\pi}} V_{tb} V_{ts}^* \left[\left\{ \begin{array}{c} C_9 \left\langle K^* | \bar{s} \gamma^{\mu} P_L b | \bar{B} \right\rangle - \frac{2C_7}{q^2} \left\langle K^* | \bar{s} i \sigma^{\mu\nu} q_{\nu}(m_b P_R + m_s P_L) b | \bar{B} \right\rangle \right. \\ \left. - \frac{16\pi^2}{q^2} \sum_{i = \{1 - 6, 8\}} C_i \mathcal{H}_i^{\mu} \right\} \bar{\ell} \gamma_{\mu} \ell + C_{10} \left\langle K^* | \bar{s} \gamma^{\mu} P_L b | \bar{B} \right\rangle \bar{\ell} \gamma_{\mu} \gamma_5 \ell \right] \\ \text{Wilson coefficients} \\ \text{Non-local operator} \\ \text{non-local operator} \\ \text{for non factorization contributions} \\ \mathcal{H}_i^{\mu} \sim \left\langle K^* | i \int d^4 x \, e^{iq \cdot x} T\{j_{em}^{\mu}(x), \mathcal{O}_i(0)\} | \bar{B} \right\rangle \Longrightarrow \text{ parametrize with 'new'}$$

form-factors
$$\mathcal{Z}^i_j$$

[Khodjamirian et. al '10]

Absorbing factorizable & non-factorizable contributions into

$$C_9 \rightarrow \widetilde{C}_9^{(j)} = C_9 + \Delta C_9^{(\text{fac})}(q^2) + \Delta C_9^{(j),(\text{non-fac})}(q^2)$$

$$\sim \sum_{i} C_{i} \, \mathcal{Z}_{j}^{i} / \mathcal{X}_{j}$$
$$\frac{2(m_{b} + m_{s})}{q^{2}} \, C_{7} \, \mathcal{Y}_{j} \longrightarrow \widetilde{\mathcal{Y}}_{j} = \frac{2(m_{b} + m_{s})}{q^{2}} \, C_{7} \, \mathcal{Y}_{j} + \cdots$$

Absorbing factorizable & non-factorizable contributions into

$$C_9 \rightarrow \widetilde{C}_9^{(j)} = C_9 + \Delta C_9^{(\text{fac})}(q^2) + \Delta C_9^{(j),(\text{non-fac})}(q^2)$$

 $\sim \sum C_i \mathcal{Z}_j^i / \mathcal{X}_j$

$$\frac{2(m_b+m_s)}{q^2} C_7 \mathcal{Y}_j \longrightarrow \widetilde{\mathcal{Y}}_j = \frac{2(m_b+m_s)}{q^2} C_7 \mathcal{Y}_j + \cdots$$

Most general parametric form of amplitude in SM

$$\mathcal{A}_{\lambda}^{L,R} = \left(\widetilde{C}_{9}^{\lambda} \mp C_{10} \right) \mathcal{F}_{\lambda} - \widetilde{\mathcal{G}}_{\lambda} \qquad \mathcal{A}_{t} \big|_{m_{\ell}=0} = 0$$

Form-factors:
$$\mathcal{F}_{\lambda} \equiv \mathcal{F}_{\lambda}(\mathcal{X}_{j})$$
 and $\widetilde{\mathcal{G}}_{\lambda} \equiv \widetilde{\mathcal{G}}_{\lambda}(\widetilde{\mathcal{Y}}_{j})$

Right-Handed Current

 \triangleright Chirality flipped operators $\mathcal{O} \Leftrightarrow \mathcal{O}'$

In presence of right-handed gauge boson or other kind of new particles like leptoquarks etc..

$$Amplitudes \ \mathcal{A}_{\perp}^{L,R} = \left((\widetilde{C}_{9}^{\perp} + C_{9}') \mp (C_{10} + C_{10}') \right) \mathcal{F}_{\perp} - \widetilde{\mathcal{G}}_{\perp} \\ \mathcal{A}_{\parallel,0}^{L,R} = \left((\widetilde{C}_{9}^{\parallel,0} - C_{9}') \mp (C_{10} - C_{10}') \right) \mathcal{F}_{\parallel,0} - \widetilde{\mathcal{G}}_{\parallel,0} \\ Amplitudes \ r_{\lambda} = \frac{\operatorname{Re}(\widetilde{\mathcal{G}}_{\lambda})}{\mathcal{F}_{\lambda}} - \operatorname{Re}(\widetilde{C}_{9}^{\lambda}) \qquad \xi = \frac{C_{10}'}{C_{10}} \quad \xi' = \frac{C_{9}'}{C_{10}} \\ \text{Variables } \ R_{\perp} = \frac{\frac{r_{\perp}}{C_{10}} - \xi'}{1 + \xi}, \ R_{\parallel} = \frac{\frac{r_{\parallel}}{C_{10}} + \xi'}{1 - \xi}, \ R_{0} = \frac{\frac{r_{0}}{C_{10}} + \xi'}{1 - \xi}. \\ \text{HQET limit } \ \frac{\widetilde{\mathcal{G}}_{\parallel}}{\mathcal{F}_{\parallel}} = \frac{\widetilde{\mathcal{G}}_{\perp}}{\mathcal{F}_{\perp}} = \frac{\widetilde{\mathcal{G}}_{0}}{\mathcal{F}_{0}} = -\kappa \frac{2m_{b}m_{B}C_{7}}{q^{2}}, \qquad \text{[Grinstein, Prijol '04]} \\ \text{[Bobeth et. al '10]} \\ \hline R_{0} = r_{\parallel} = r_{\perp} \equiv r \quad \text{ignoring non-factorisable corrections} \\ \hline R_{0} = R_{\parallel} \neq R_{\perp} \qquad \text{in presence of RH currents} \\ \end{array}$$

At kinematic endpoint

 exact HQET limit
 polarization independent non-factorisable correction

▶ Observables
$$F_L(q_{\max}^2) = \frac{1}{3}, F_{\parallel}(q_{\max}^2) = \frac{2}{3}, A_4(q_{\max}^2) = \frac{2}{3\pi},$$

$$F_{\perp}(q_{\max}^2) = 0, \ A_{FB}(q_{\max}^2) = 0, \ A_{5,7,8,9}(q_{\max}^2) = 0.$$
[Hiller, Zwicky '14]

Taylor series expansion around $\delta \equiv q_{\rm max}^2 - q^2$

$$F_{L} = \frac{1}{3} + F_{L}^{(1)}\delta + F_{L}^{(2)}\delta^{2} + F_{L}^{(3)}\delta^{3}$$
$$F_{\perp} = F_{\perp}^{(1)}\delta + F_{\perp}^{(2)}\delta^{2} + F_{\perp}^{(3)}\delta^{3}$$
$$A_{\rm FB} = A_{\rm FB}^{(1)}\delta^{\frac{1}{2}} + A_{\rm FB}^{(2)}\delta^{\frac{3}{2}} + A_{\rm FB}^{(3)}\delta^{\frac{5}{2}}$$
$$A_{5} = A_{5}^{(1)}\delta^{\frac{1}{2}} + A_{5}^{(2)}\delta^{\frac{3}{2}} + A_{5}^{(3)}\delta^{\frac{5}{2}},$$

CKM 2016, TIFR

RH Current

Limiting analytic expressions

Results in $C'_{10}/C_{10} - C'_9/C_{10}$

CKM 2016, TIFR

Results in $C'_{10}/C_{10} - C'_9/C_{10}$

Rusa Mandal, IMSc

Fit to form factor observables

CKM 2016, TIFR

Rusa Mandal, IMSc

Fit to form factor observables

nicely explained by 3rd order polynomial

CKM 2016, TIFR

Convergence of coefficients

CKM 2016, TIFR

13

Rusa Mandal, IMSc

Convergence of coefficients

Shows a good convergence with variation in polynomial order & no. of bins used for the data fit

 $car{c}$ bound states added: J/ψ , $\psi(2S)$, $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$.

Observable — Form-factors + Kruger & Sehgal parametrization

Asymmetries decrease in high q^2 region

makes observable ω_1 unphysical

 $car{c}$ bound states added: J/ψ , $\psi(2S)$, $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$.

Observable — Form-factors + Kruger & Sehgal parametrization

Asymmetries decrease in high q^2 region

makes observable ω_1 unphysical

 $car{c}$ bound states added: J/ψ , $\psi(2S)$, $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$.

Observable — Form-factors + Kruger & Sehgal parametrization

Asymmetries decrease in high q^2 region

makes observable ω_1 unphysical

 $car{c}$ bound states added: J/ψ , $\psi(2S)$, $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$.

Observable — Form-factors + Kruger & Sehgal parametrization

Asymmetries decrease in high q^2 region

makes observable ω_1 unphysical

 $car{c}$ bound states added: J/ψ , $\psi(2S)$, $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$.

Observable — Form-factors + Kruger & Sehgal parametrization

Asymmetries decrease in high q^2 region

makes observable ω_1 unphysical

 $car{c}$ bound states added: J/ψ , $\psi(2S)$, $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$.

Observable — Form-factors + Kruger & Sehgal parametrization

Asymmetries decrease in high q^2 region

makes observable ω_1 unphysical

Summary

Summary

Section of the sectio

Strong evidence of RH currents derived at endpoint limit —

- systematics studied by varying polynomial order & bin no.
- ▶ finite K^* width effect considered
- resonance systematics & experimental correlation can reduce significance of deviation

Fluctuation? Wait for more data to be accumulated!

Summary

Section of the sectio

Strong evidence of RH currents derived at endpoint limit —

- systematics studied by varying polynomial order & bin no.
- ▶ finite K^* width effect considered
- resonance systematics & experimental correlation can reduce significance of deviation

Fluctuation? Wait for more data to be accumulated!

Thank you

Back Up

Complex part of amplitudes

SM amplitude $\mathcal{A}_{\lambda}^{L,R} = (\widetilde{C}_{9}^{\lambda} \mp C_{10})\mathcal{F}_{\lambda} - \widetilde{\mathcal{G}}_{\lambda}$ Complex part $\varepsilon_{\lambda} \equiv \operatorname{Im}(\widetilde{C}_{9}^{\lambda})\mathcal{F}_{\lambda} - \operatorname{Im}(\widetilde{\mathcal{G}}_{\lambda})$

Iterative solutions

$$\begin{split} \varepsilon_{\perp} &= \frac{\sqrt{2}\pi\Gamma_{\!f}}{(r_0 - r_{\parallel})\mathcal{F}_{\!\perp}} \left[\frac{A_9\mathsf{P}_1}{3\sqrt{2}} + \frac{A_8\mathsf{P}_2}{4} - \frac{A_7\mathsf{P}_1\mathsf{P}_2r_{\perp}}{3\pi\widehat{C}_{10}} \right], \\ \varepsilon_{\parallel} &= \frac{\sqrt{2}\pi\Gamma_{\!f}}{(r_0 - r_{\parallel})\mathcal{F}_{\!\perp}} \left[\frac{A_9r_0}{3\sqrt{2}r_{\perp}} + \frac{A_8\mathsf{P}_2r_{\parallel}}{4\mathsf{P}_1r_{\perp}} - \frac{A_7\mathsf{P}_2r_{\parallel}}{3\pi\widehat{C}_{10}} \right], \\ \varepsilon_0 &= \frac{\sqrt{2}\pi\Gamma_{\!f}}{(r_0 - r_{\parallel})\mathcal{F}_{\!\perp}} \left[\frac{A_9\mathsf{P}_1r_0}{3\sqrt{2}\mathsf{P}_2r_{\perp}} + \frac{A_8r_{\parallel}}{4r_{\perp}} - \frac{A_7\mathsf{P}_1r_0}{3\pi\widehat{C}_{10}} \right]. \end{split}$$

Complex part of amplitudes

q^2 range in GeV ²	$arepsilon_{\perp}/\sqrt{\Gamma_{\!f}}$	$arepsilon_\parallel/\sqrt{\Gamma_{\!f}}$	$arepsilon_0/\sqrt{\Gamma_{\!f}}$
$0.1 \le q^2 \le 0.98$	-0.048 ± 0.116	-0.047 ± 0.103	0.020 ± 0.111
$1.1 \le q^2 \le 2.5$	-0.010 ± 0.078	-0.010 ± 0.078	0.078 ± 0.172
$2.5 \le q^2 \le 4.0$	-0.009 ± 0.079	-0.008 ± 0.080	-0.025 ± 0.212
$4.0 \le q^2 \le 6.0$	-0.026 ± 0.097	0.014 ± 0.093	0.032 ± 0.234
$6.0 \le q^2 \le 8.0$	-0.011 ± 0.088	-0.046 ± 0.078	-0.132 ± 0.129
$11.0 \le q^2 \le 12.5$	-0.011 ± 0.050	0.038 ± 0.074	-0.078 ± 0.114
$15.0 \le q^2 \le 17.0$	-0.0003 ± 0.067	-0.027 ± 0.071	0.020 ± 0.072
$17.0 \le q^2 \le 19.0$	0.006 ± 0.076	-0.090 ± 0.090	-0.040 ± 0.088

 $\frac{\varepsilon_{\lambda}}{\sqrt{\Gamma_f}}$ values with errors are consistent with zero

Limiting analytic expressions

$$R_{\perp}(q_{\max}^2) = \frac{\omega_2 - \omega_1}{\omega_2 \sqrt{\omega_1 - 1}}, \quad R_{\parallel}(q_{\max}^2) = \frac{\sqrt{\omega_1 - 1}}{\omega_2 - 1} = R_0(q_{\max}^2)$$
$$\omega_1 = \frac{3}{2} \frac{F_{\perp}^{(1)}}{A_{FB}^{(1)\,2}} \text{ or } \frac{3}{8} \frac{F_{\perp}^{(1)}}{A_5^{(1)\,2}} \text{ and } \omega_2 = \frac{4\left(2A_5^{(2)} - A_{FB}^{(2)}\right)}{3A_{FB}^{(1)}\left(3F_L^{(1)} + F_{\perp}^{(1)}\right)} \text{ or } \frac{4\left(2A_5^{(2)} - A_{FB}^{(2)}\right)}{6A_5^{(1)}\left(3F_L^{(1)} + F_{\perp}^{(1)}\right)}$$

	Real limit	Complex limit	Adding finite K^* width
ω_1	1.09 ± 0.33 0.93 ± 0.36	$\begin{array}{c} 0.98 \pm 0.33 \\ 0.85 \pm 0.30 \end{array}$	$1.18 \pm 0.35 \\ 1.02 \pm 0.40$
ω_2	-2.87 ± 6.69 -2.65 ± 6.18	-2.85 ± 12.54 -2.59 ± 6.22	-2.48 ± 5.95 -2.30 ± 5.51

Parametrization in Wilson coefficient C_9 [Kruger, S

[Kruger, Sehgal '96]

$$g(m_c, q^2) = -\frac{8}{9} \ln \frac{m_c}{m_b} - \frac{4}{9} + \frac{q^2}{3} P \int_{4\hat{m}_D^2}^{m_b^2} \frac{R_{\text{had}}^{c\bar{c}}(x)}{x(x-q^2)} dx + i\frac{\pi}{3} R_{\text{had}}^{c\bar{c}}(q^2)$$

$$R_{\rm had}^{c\bar{c}}(q^2) = R_{\rm cont}^{c\bar{c}}(q^2) + \sum_{V=J/\psi,\psi'\dots} \frac{9q^2}{\alpha} \frac{{\rm Br}(V\to l^+l^-)\Gamma_{\rm total}^V\Gamma_{\rm had}^V}{(q^2-m_V^2)^2 + m_V^2\Gamma_{\rm total}^{V2}} e^{i\delta_V}$$

Solutions

$$\begin{split} R_{\perp} &= \pm \frac{3}{2} \frac{\left(\frac{1-\xi}{1+\xi}\right) F_{\perp} + \frac{1}{2} \mathsf{P}_{1} Z_{1}}{\mathsf{P}_{1} A_{\mathrm{FB}}} & F_{\perp} = 2\zeta \left(1+\xi\right)^{2} (1+R_{\perp}^{2}) \\ F_{\parallel} \mathsf{P}_{1}^{2} &= 2\zeta \left(1-\xi\right)^{2} (1+R_{\parallel}^{2}) \\ F_{\parallel} \mathsf{P}_{1}^{2} &= 2\zeta \left(1-\xi\right)^{2} (1+R_{\parallel}^{2}) \\ F_{\parallel} \mathsf{P}_{2}^{2} &= 2\zeta \left(1-\xi\right)^{2} (1+R_{\parallel}^{2}) \\ A_{\mathrm{FB}} \mathsf{P}_{1} &= 3\zeta \left(1-\xi^{2}\right) (R_{\parallel}+R_{\perp}) \\ R_{0} &= \pm \frac{3}{2\sqrt{2}} \frac{\left(\frac{1+\xi}{1-\xi}\right) \mathsf{P}_{2} F_{L} + \frac{1}{2} Z_{2}}{A_{5}} & \sqrt{2} A_{5} \mathsf{P}_{2} &= 3\zeta \left(1-\xi^{2}\right) (R_{0}+R_{\perp}) \\ \mathsf{P}_{2} &= \frac{\left(\frac{1-\xi}{1+\xi}\right) 2\mathsf{P}_{1} A_{\mathrm{FB}} F_{\perp}}{\sqrt{2} A_{5} \left(\left(\frac{1-\xi}{1+\xi}\right) 2F_{\perp}+Z_{1} \mathsf{P}_{1}\right) - Z_{2} \mathsf{P}_{1} A_{\mathrm{FB}}} \end{split}$$

$$Z_1 = \sqrt{4F_{\parallel}F_{\perp} - \frac{16}{9}A_{\rm FB}^2}$$
 $Z_2 = \sqrt{4F_LF_{\perp} - \frac{32}{9}A_5^2}$

CKM 2016, TIFR