The mass of the **QCD** axion

Kalman Szabo

Forschungszentrum Jülich & University of Wuppertal

Borsanyi, Fodor, Guenther, Kampert, Katz, Kawanai, Kovacs, Mages, Pasztor, Pittler, Redondo, Ringwald

Calculation of the axion mass based on high-temperature lattice QCD

Nature 539 69 (2016)

Outline

1. Axions

2. Instantons

Strong CP problem

Most general SU(3) symmetric Lagrangian

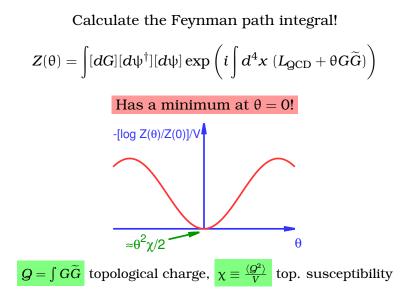
$$L = L_{QCD} + \theta \cdot G\widetilde{G}$$

$\boldsymbol{\theta}$ could be the source of P, CP violation.

It isn't. From nEDM experiments $\rightarrow \theta < 10^{-10}$

Why?

θ dependence of QCD



A solution by Peccei-Quinn '77

Turn the parameter into

a dynamical field!

figs/thetapot/plot.gif

$$L_{QCD} + \theta \cdot G\widetilde{G} + \frac{1}{2}f_a^2 \cdot (\partial_{\mu}\theta)^2 + V(\theta, \partial_{\mu}\theta)$$

with $\overline{V(\theta, \partial_{\mu}\theta)}$ such, that minimum stays at $\theta = 0$.

PQ: Spontaneously broken global $U(1)_{PQ}$ at scale f_a . θ = Goldstone mode. Only derivative couplings $V = V(\partial \theta)$.

 \rightarrow axion pseudo-Goldstone $m_a^2 = \chi/f_a^2$ [Weinberg,Wilczek]

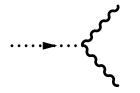
The QCD axion [Weinberg,Wilczek]

Pseudo-Goldstone boson with mass $m_a^2 = \chi / f_a^2$

Couplings? Model dependent.

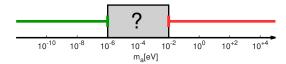
Introduce a $U(1)_{PQ}$ field φ in Mexican-hat plus

 \rightarrow heavy quark Q [KSVZ] \rightarrow two Higgs H_u , H_d [DFSZ]



Smaller mass more elusive

The axion mass window

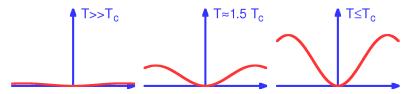


Can't be too large \rightarrow would have "seen" it, since coupling $\sim m_a$ [HAYSTAC '16] Frequency (GHz) 5.74 5.70 5.72 5.76 5.78 5.80 10 ZASH6 / 10⁰ 6 RBF This work KSVZ $\left|g_{a_{W}}\right|(10^{-14} \text{ GeV}^{-1})$ 10 10 5 m_a (μeV)¹⁵ 20 This work ĸsvz DFSZ 23.8 m_a (μeV) 23.6 23.7 23.9 24.0

Can't be too small \rightarrow too much of them . . .

Axions from early Universe [Preskill,Wilczek,Wise, ... '83]

Potential becomes flat at QCD transition ($T_c \approx 150$ MeV)



Axion field equation in expanding Universe:

$$\frac{d^{2}\theta}{dt^{2}} + 3H(T)\frac{d\theta}{dt} + \chi(T)/f_{a}^{2}\sin\theta = 0$$

PQ breaking at $T \sim f_a \gtrsim 10^{11}$ GeV then decoupling \rightarrow initial angle θ_0 . As universe cools H-friction decreases, potential increases, axion rolls down and starts oscillating.

Acts as (cold) dark matter!

Constraining m_a from dark matter

Number of axions $\Omega_a(m_a)$: smaller m_a gives larger Ω_a .

 $\Omega_a \leq \Omega_{DM}$ lower bound on m_a .

Assuming all DM is axion \rightarrow prediction for m_a .

We need:

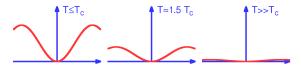
1. Axion potential $\chi(T)$

2. Hubble rate H(T) \rightarrow equation of state $\epsilon(T), p(T)$

Instantons from the lattice

Topological susceptibility at T > 0

 $\chi(T)=\frac{\langle Q^2\rangle}{V}\sim$ fraction of gauge field configurations with non-trivial topology (Q)



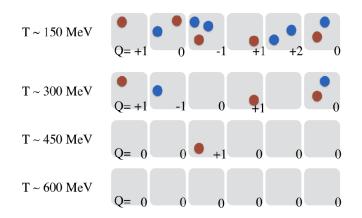
Strong suppression for high temperatures:

1. path integral weight $\exp(-S_Q/g^2)$ with $g(T) \to 0$ 2. fermion index theorem $\det(D+m) \sim m^{|Q|}$

Signal is small \rightarrow challenges:

large statistical error and large lattice artefacts

$\chi(T)$ from standard approach

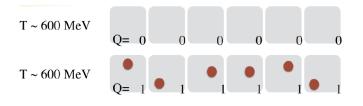


Simulate for centuries to get the first Q > 0 configuration!

 $\chi({\it T})$ from fixed Q integral

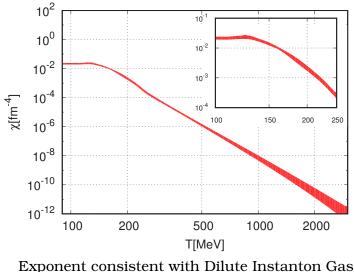
Determine slope instead of susceptibility: see also in [Frison et al '16]

$$-rac{d\log\chi}{d\log T}=b=4+rac{deta}{dT}\langle S_g
angle_{1-0}+\sum_frac{dm_f}{dT}m_f\langle\overline{\psi}\psi
angle_{1-0}$$



finally perform an integral $\chi(T) = -\int d\log T \ b(T)$

Topological susceptibility

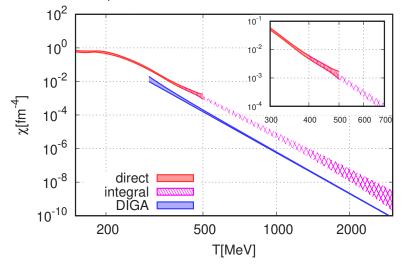


Approximation (-8), prefactor is 5x larger.

DIGA [Gross,Pisarski,Yaffe '81]

$$f(\theta) = \chi_{1loop}(T) \cdot (1 - \cos \theta)$$

n_f=3+1 flavor ("three flavor symmetric point")



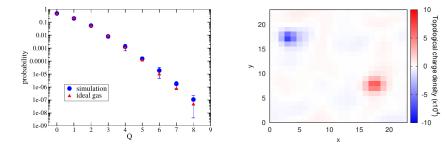
Ideal gas approximation

independent objects carrying ± 1 topological charge \rightarrow

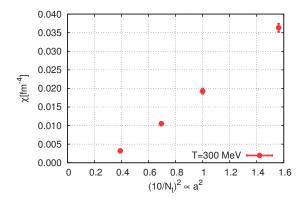
 $f(\theta) = \chi(T) \cdot (1 - \cos \theta)$

seems valid above $T \gtrsim T_c$

eg. T=180 MeV physical point L = 6.6 fm:



Difficult continuum extrapolation



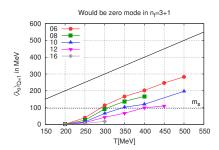
Non-chiral fermions have no exact fermion zero modes

 $\det(D+m) \sim (m+\lambda_0)^{|Q|}$ with $\lambda_0 \neq 0$ on the lattice

 \rightarrow Too large χ , too small slope!

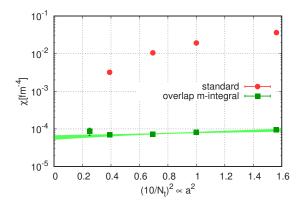
Continuum instanton and zero mode

Lattice instanton and zero mode



Continuum extrapolation

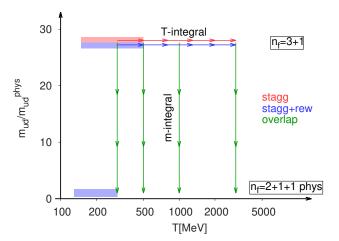
Doing full simulation with chiral fermions is too expensive.



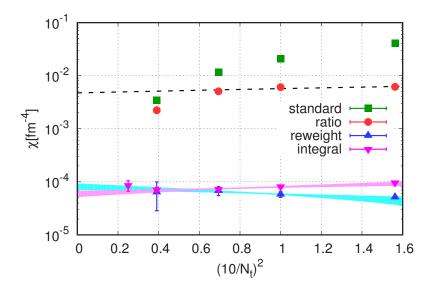
- 1. Simulate at large mass $(30 \cdot m_{ud}^{phys})$, continuum extrapolation behaves much better.
- 2. Calculate difference to m_{ud}^{phys} by integrating in *m* using fermion with exact chiral symmetry.

Map of simulations

- 4-stout staggered $n_f = 3 + 1$
- ► 4-stout staggered with fixed top.
- 4-stout staggered $n_f = 2 + 1 + 1$
- dynamical overlap $n_f = 2 + 1$ with fixed top.

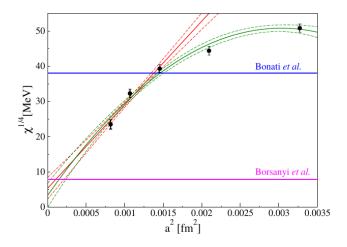


Continuum extrapolation at T=300 MeV



Comparison with others [Bonati et al '16 '18]

Continuum extrapolation at T=430 MeV:

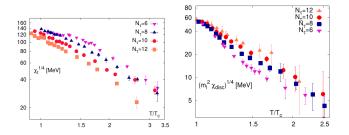


Comparison with others [Petreczky, Sharma '16]

$\chi(T)$ from HISQ fermions

Use two different definitions for topological charge (gluonic and fermionic).

Both have sizeable discretization errors but approach the continuum limit from different directions.

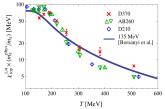


Comparison with others

[Petreczky, Sharma '16] "the dependence is found to be consistent with dilute instanton gas approximation"

[Taniguchi et al '17] "a decrease in T which is consistent with the predicted $\chi(T) \propto T^{-8}$ "

[Lombardo et al '18]: "with an exponent close to the one predicted by the DIGA"



[Bonati et al '18] "The continuum extrapolation is in agreeement with previous lattice determinations"

The simplest estimate

Assuming

- 1. all DM is axion $\Omega_{DM} = \Omega_a(m_a)$
- 2. axion field is spatially constant in very large domains
- 3. there are many domains with random initial value of the field (θ_0)

Evolution equations are simple to solve.

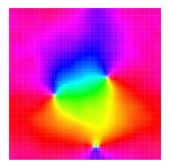
 $\rightarrow m_a = 28(1) \mu eV$

Howto improve: take into account spatial dependence $\theta(\vec{x})$ and take θ_0 from PQ transition

Axion strings

Axion strings [Vilenkin, Everett]

 θ_0 can be undefined \equiv axion string.



What is their effect on axion production? Vastly different estimates.

Proper way: classical field theory simulation, but extreme demanding: f_a , H differ by factor 10³⁰!

Heavy string simulation [Moore, Klaer '17]

Problem: coarse lattice does not resolve string core \rightarrow too small string tension.

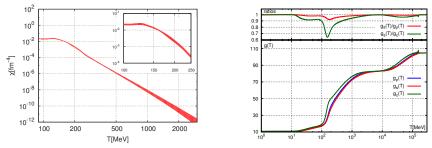
Idea: make string cores artifically heavier, while not changing long distance properties. Attach a local string to each global string.

Surprise: less axions in the presence of strings.

$$\rightarrow m_a = 26.2(3.4) \mu eV$$

Summary

Lattice QCD has made a good progress in calculating the necessary inputs for axion cosmology.



Several algorithmic developments were necessary.

Still not calculated: axion potential beyond leading order b_2

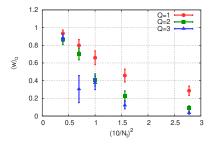
Still not well understood: global string dynamics, simulations with large string tension is already possible

On good way to a solid theory prediction!

Backup

Reweighting

Problem: In continuum weight is *m*, on the lattice $m + \lambda_0[U]$. Solution: change weight of configuration by $w[U] \equiv \frac{m}{m + \lambda_0[U]}$ $\langle w \rangle_Q$ must approach 1 in the continuum limit.



Improves the observable <u>without</u> changing the action.

$$\chi = \frac{\sum Q^2 \ Z_Q}{\sum Z_Q} \rightarrow \chi_{\rm rew} = \frac{\sum Q^2 \ \langle w \rangle_Q \ Z_Q}{\sum \langle w \rangle_Q \ Z_Q}$$

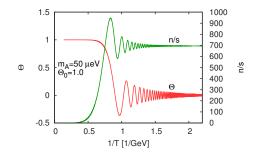
Number of axions

Energy density: $\epsilon_a(t) = \frac{1}{2}f_a^2\dot{\theta}^2 + \chi(t)(1-\cos\theta)$

Number density: $n_a(t)$

$$n_a(t) = \frac{\epsilon_a(t)}{m_a(t)}$$

Number density normalized by total entropy density converges to a constant.



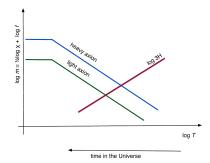
Axion energy density today:

 $\Omega_a \equiv \epsilon_{a,\mathrm{today}} = n_{a,\mathrm{today}} \; m_a = rac{n_{a,\mathrm{today}}}{s_{\mathrm{today}}} \; s_{\mathrm{today}} \; m_a pprox rac{n_a(t)}{s(t)} \; s_{\mathrm{today}} \; m_a$

The lighter the more

Looks paradox, since $\epsilon_0 = m_0 \cdot n_0$

• the lighter, the later it oscillates $3H = m = m_0 \sqrt{\chi}$



- later Hubble-dilution is smaller (T^3)
- later energy density ($\chi = T^{-b}$) is larger

Densities at oscillation (*T*) and today (0):

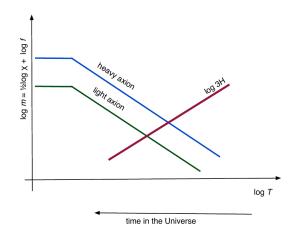
$$\epsilon = \chi, \qquad n = \frac{\epsilon}{m} = \frac{\chi}{m_0 \sqrt{\chi}} = \frac{H}{m_0^2} = \frac{T^2}{m_0^2}, \qquad s = T^3, \qquad n_0 = \frac{n}{s} s_0 = \frac{1}{m_0^2 T}$$
$$\longrightarrow \qquad \epsilon_0 = \frac{1}{m_0 T}$$

Lighter mass more axions

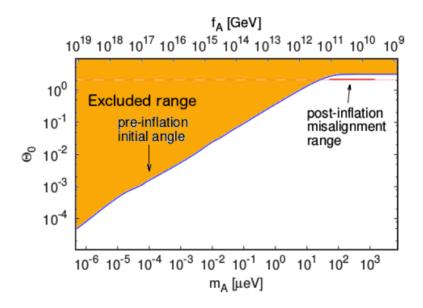
Have to solve

$$\frac{d^2\theta}{dt^2} + 3H(T)\frac{d\theta}{dt} + \frac{\chi(T)}{f_a^2}\sin\theta = 0$$

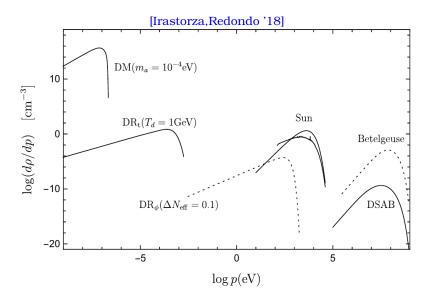
Rolling starts when $3H(T) \approx \sqrt{\chi(T)}/f_a$



Axion mass and initial angle

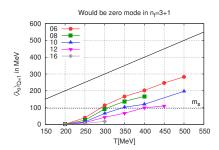


Sources of axions



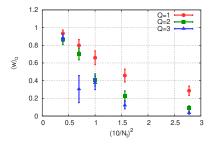
Continuum instanton and zero mode

Lattice instanton and zero mode



Reweighting

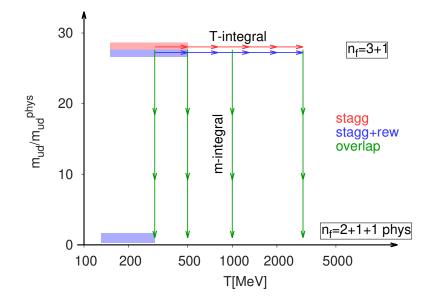
Problem: In continuum weight is *m*, on the lattice $m + \lambda_0[U]$. Solution: change weight of configuration by $w[U] \equiv \frac{m}{m + \lambda_0[U]}$ $\langle w \rangle_Q$ must approach 1 in the continuum limit.



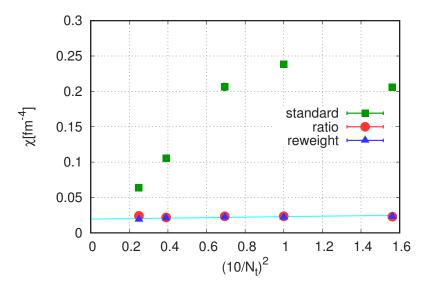
Improves the observable <u>without</u> changing the action.

$$\chi = \frac{\sum Q^2 \ Z_Q}{\sum Z_Q} \rightarrow \chi_{\rm rew} = \frac{\sum Q^2 \ \langle w \rangle_Q \ Z_Q}{\sum \langle w \rangle_Q \ Z_Q}$$

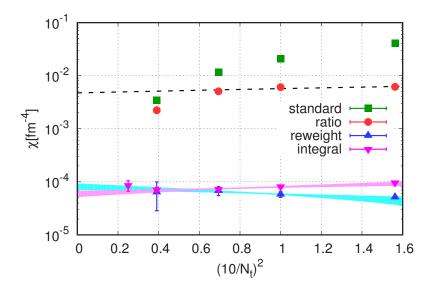
Map of simulations



Continuum extrapolation at T=150 MeV

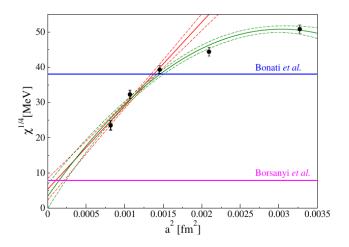


Continuum extrapolation at T=300 MeV

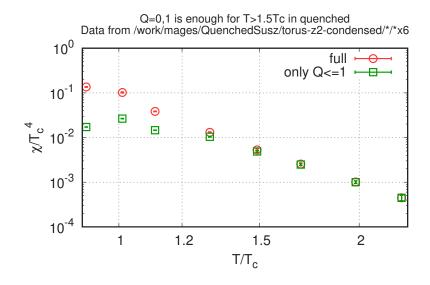


Continuum extrapolation at T=430 MeV

[Bonati et al '18]

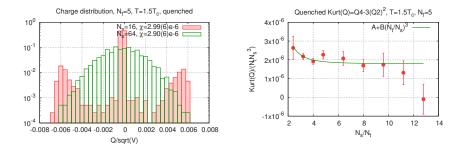


Contribution from $Q = 0, \pm 1$



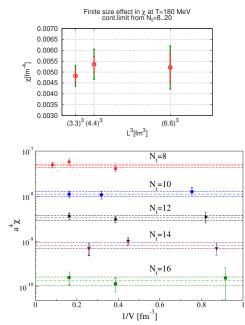
Volume dependence illustration

Q distribution depends (extensive quantity)



susceptibility, kurtosis (intensive quantitites) not

Volume (in)dependence at the physical point



[Bonati et al '18]