

Recent tt differential cross-sections measurements

Riccardo Di Sipio, University of Toronto on behalf of the ATLAS, CMS, CDF and D0 Collaborations

Parton-level view (full phase-space)

What we're ultimately interested in: the **kinematics** of the two **top quarks**

Testing higher-order calculations not yet matched to parton shower

Depend on the details of the calculation Monte Carlo generators used to assess corrections

All-hadronic (5/9) large xs, large multijet bkg

*l***+jets (4/9)** Good for trigger, S/B

Di-leptonic (1/9) Small bkg, small stats

lepton+jets resolved

Particle-level view (fiducial phase-space)

What we actually observe: the **kinematics** of the **final-state objects** (leptons, jets, neutrinos), i.e. the **decay products** of the two top quarks + additional **radiation**

Testing Monte Carlo generators

Minimizes extrapolation between measurement and predictions

lepton+jets resolved

TOP-16-008

R. Di Sipio

Particle-level view (fiducial phase-space)

What we actually observe: the **kinematics** of the **final-state objects** (leptons, jets, neutrinos), i.e. the **decay products** of the two top quarks + additional **radiation**

Testing Monte Carlo generators

Minimizes extrapolation between measurement and predictions

R. Di Sipio

dilepton channel

Particle-level view (fiducial phase-space)

What we actually observe: the **kinematics** of the **final-state objects** (leptons, jets, neutrinos), i.e. the **decay products** of the two top quarks + additional **radiation**

Testing Monte Carlo generators

Minimizes extrapolation between measurement and predictions

all-hadronic boosted

R. Di Sipio

Particle-level view (fiducial phase-space)

What we actually observe: the **kinematics** of the **final-state objects** (leptons, jets, neutrinos), i.e. the **decay products** of the two top quarks + additional **radiation**

Testing Monte Carlo generators

Minimizes extrapolation between measurement and predictions

R. Di Sipio

How to measure

Parton-level top quarks

Selection based on navigation of the MC truth tree

Generator-dependent, usually associated with large systematic uncertainties

Pseudo-top reconstruction

Proxy to parton-level top quarks to reduce systematic uncertainties wrt parton-level. Limited by jet measurement, b-tagging, modelling

Reconstructs decay chains by applying kinematic constraints such as m_w, m_t to stable particles

Algorithm agreed upon among theorists and experimentalists (see <u>Rivet</u>)

How to measure

jet b-jet v

Parton-level top quarks

Selection based on navigation of the MC truth tree

Generator-dependent, usually associated with large systematic uncertainties

Di-lepton reconstruction

Proxy to parton-level top quarks to reduce systematic uncertainties wrt parton-level

Reconstructs decay chains by applying kinematic constraints ("Neutrino weighting") to stable particles to find optimal longitudinal component of momenta PLB 752, 18 (2016)

Limited by stats, b-tagging, modelling

How to measure

jet jet

Parton-level top quarks

Selection based on navigation of the MC truth tree

Generator-dependent, usually associated with large systematic uncertainties

Large-R jets reconstruction

Hadronic decay of a high- p_{T} top quark contained in a large-R jet

Straightforward kinematic reconstruction based on stable particles

Limited by stats, large-R jet measurement, b-tagging, modelling

What we can do

Test perturbative QCD

- Impact of higher-order corrections, e.g. NNLO+NNLL
- Test different jet-matching schemes, tune MC parameters
- Test different parton-shower and hadronization models

Improve knowledge about the structure of the proton

- Constrain gluon PDF
- Extract a_s, m_{top}

Search for beyond the Standard Model physics

- Look for deviations in differential cross-sections
- Reduce modelling uncertainty to enhance sensitivity to BSM

Top quark pt, y

- Top p_T probably the most important observable
- Sensitive to final state radiation
- Measurement up to ~1 TeV spans different kinematic regimes, thus reconstruction methods
- Many sources indicate data/theory disagreement at high- p_T

*ł***+jets, Particle level**

{+jets, Particle level, resolved

TOP-16-008

Source	Particle	Parton
	level [%]	level [%]
Statistical uncertainty	1–5	1–5
Jet energy scale	5–8	6–8
Jet energy resolution	<1	<1
$\vec{p}_{\rm T}^{\rm miss}$ (non jet)	<1	<1
b tagging	2–3	2-3
Pileup	<1	<1
Lepton selection	3	3
Luminosity	2.7	2.7
Background	1–3	1-3
PDF	<1	<1
Fact./ren. scale	<1	<1
Parton shower scale	2–5	2-9
POWHEG+PYTHIA8 vs. HERWIG++	1–5	1-12
NLO event generation	1-5	1-10
mt	1–2	1–3

Largest systematics: jet energy scale, b-tagging efficiency, MC modelling

CONF-2016-040

{+jets, Parton level

Dilepton, Particle level

Dilepton, Parton level

All-hadronic, Particle level

All-hadronic, Parton level

NB: this is the **leading-***p***^T** top In other channels only the **average** of both top quarks is presented

R. Di Sipio

CKM2016 - Mumbai, Nov 28 - Dec 02, 2016

2

Top-Quark Rapidity

Data/MC seems well-modelled in all channels

m^{tt}, p^{tt}, y^{tt}

- Mass probably the most *intriguing* observable
- Appearance of bumps or dips can signal the presence of BSM resonant states or SM/BSM interference

- *p*_T^{tt} sensitive to additional radiation (e.g. initial-state radiation)
- Rapidity sensitive to parton distribution functions, especially when binned in mass

26

tt system invariant mass

Data/MC **seems well-modelled Resolution** limits bump hunting All-Hadronic boosted promising (no neutrinos, only two jets)

27

tt system transverse momentum

Data/MC **seems better modelled** by **NNLO** than **NLO+NLL** Additional radiation **constrain** Monte Carlo generators (POWHEG)

28

tt system rapidity

Tendency to be overestimated in the forward region Sensitive to choice of PDF set

CKM2016 - Mumbai, Nov 28 - Dec 02, 2016

29

tt system rapidity

Double-differential measurement constrains **gluon PDF**

CKM2016 - Mumbai, Nov 28 - Dec 02, 2016

Extra jets activity

31

Extra jets activity

Summary

- Top-quark pairs differential cross-sections instrumental to constrain theory and search for BSM physics
- **NLO** generators (particle level) and **NNLO** calculations (parton level) constrained by data
 - NNLO corrections improve data/theory agreement in top transverse momentum
- Entering the era of **boosted tops** and **double**differential cross-sections

Backup

Recent results $\sqrt{s} = 13$ TeV

	ℓ+jets	dilepton	all-hadronic
ATLAS	CONF-2016-040 resolved/boosted, particle	TOPQ-2016-04 resolved, particle TOPQ-2015-17 jet activity	CONF-2016-100 boosted, particle
CMS	TOP-16-008 resolved, parton/particle	TOP-16-007 resolved, particle TOP-16-011 resolved, parton	TOP-16-013 resolved/boosted, parton

Recent results $\sqrt{s} = 7/8$ TeV

I

ℓ+jets	dilepton	all-hadronic
Phys. Rev. D93(2016) 032009 boosted, parton/particle EPJ C76 (2016) 538 resolved, parton/particle JHEP 06(2015)100	PRD 94 092003(2016) resolved, parton	
Phys. Rev. D 94 (2016) 052006 resolved, particle	TOP-14-013 resolved, parton (2D)	
Phys. Rev. D 94, 072002 (2016) boosted, parton/particle EPJC 75(2015)542	EPJC 75(2015)542 resolved, parton EPJC 76(2016)379 jet activity	Eur. Phys. J. C 76 (2016) 128 resolved, parton/particle
resolved, parton	,	

ATLAS

CMS

Recent results $\sqrt{s} = 1.96$ TeV

	ℓ+jets	dilepton	all-hadronic
CDF	PRL 111, 182002 (2013) resolved, parton cosθ		
DO	Phys. Rev. D 90, 092006 (2014) Phys.Lett.B693:515-521, 2010 resolved, parton		

Top quark *p***_T**

Data/MC **improves** at high pT if **NNLO** corrections are taken into account

Calculations not yet matched to parton shower

38

Others - Pout^{tt}

39

Others - cosθ

R. Di Siplo

40