CKM2016 - Asymmetries involved in the top quark sector (including A_c , A_{FB} and CP violation)

John Morris Queen Mary University of London

ATLAS CMS D0 CDF

30th November 2016

$t\bar{t}$ asymmetries overview

- Forward-backwards asymmetry measurements at the Tevatron
 - Latest results
- Charge asymmetry measurements at the LHC
 - ATLAS and CMS results
 - Measurements in multiple channels
 - Differential measurements
- CP violation asymmetries at the LHC
 - ullet ATLAS and CMS are using $t\bar{t}$ events to measure CP violation
 - This has never been done before, 2016 sees the first 2 results

Forward-backward asymmetry - Rev. Mod. Phys. 87 (2015) 421-455

- The Tevatron is a $p \bar{p}$ machine
- The forward-backward (FB) $t\bar{t}$ asymmetry is defined by the rapidity, y, of the top- and anti-top-quarks, where $\Delta y = y_t y_{\bar{t}}$
- The FB asymmetry is expressed as:

$$A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

ullet A Summary of the full Tevatron Run2 inclusive A_{FB} results

Charge asymmetry measurements at the LHC

- At LHC, there is no forward-backward asymmetry
- Not possible to define A_{FB}:
 - Due to symmetric initial state (p p)
- ullet Top-quark predicted to have larger |y| than anti top-quark
 - Valance quarks typically have larger momentum than sea anti-quarks
 - ullet This effect comes from the qar q o tar t process
 - ullet The dominant gg o tar t process is symmetric and dilutes the effect
- With rapidity, y, we may define $\Delta |y| = |y_t| |y_{\bar{t}}|$
- The charge asymmetry is expressed as:

$$A_c = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

Any observed deviation from SM could indicate BSM physics

Multiple measurements of A_c

- Complementary ATLAS and CMS results
- \bullet A_c has been measured in multiple channels
 - Dilepton and $\ell+{\sf jets}\ t \bar t$ channels
- ullet A_c has been measured differentially
 - As a function of $|y_{t\bar{t}}|$, $p_{\mathrm{T}}^{t\bar{t}}$, $m_{t\bar{t}}$ and $|eta_{z,t\bar{t}}|$
- ullet A_c has been measured in the boosted regime
 - ullet Enriched with qar q o tar t process
 - Higher sensitivity to BSM physics
- ullet Measurement of A_c requires the full reconstruction of the $tar{t}$ system
 - Need to reconstruct 2 top quarks from observed detector objects
 - Need to assign charge to each reconstructed top quark
 - Need to determine the rapidity of each top quark
 - Technically challenging with a probability of getting it wrong
- Dilepton measurements also measure A_c^{lep}
 - Analogous to A_c , but using the rapidity of the leptons
 - Does not require full $t\bar{t}$ reconstruction
 - Is not fully correlated to A_c , so provides extra information

CMS dilepton results - Phys. Lett. B 760 (2016) 365

- Event selection:
 - At least 2 jets:
 - $p_{
 m T} > 30\,{
 m GeV},\ |\eta| < 2.4$
 - One jet must be b-tagged
 - 2 isolated leptons (e or μ):
 - Opposite sign leptons
 - $p_{\rm T} > 20\,{
 m GeV}, \ |\eta| < 2.4$
 - In the case of same-flavour leptons:
 - ullet Veto $M_{\ell\ell}$ within 15 GeV of Z mass
 - \bullet $E_{\mathrm{T}}^{\mathrm{miss}} > 40 \, \mathrm{GeV}$
- tt̄ reconstruction:
 - Analytic solution for neutrinos
 - Matrix weighting technique
- Unfolding via TUnfold
- Inclusive results:

Variable	data
A_c	$0.011 \pm 0.011 \pm 0.007$
∆lep	$0.003 \pm 0.006 \pm 0.003$

CMS dilepton results - Phys. Lett. B 760 (2016) 365

ullet A_c as a function of $m_{t\bar{t}}$, $p_{\mathrm{T}}^{t\bar{t}}$ and $|y_{t\bar{t}}|$

• A_c^{lep} as a function of $m_{t\bar{t}}$, $p_{\mathrm{T}}^{t\bar{t}}$ and $|y_{t\bar{t}}|$

Results are consistent with the Standard Model

ATLAS dilepton results - Phys. Rev. D 94, 032006 (2016)

- Event selection:
 - At least 2 jets:
 - $p_{
 m T} > 25\,{
 m GeV},\ |\eta| < 2.5$
 - One jet must be b-tagged
 - 2 isolated leptons (e or μ):
 - Opposite sign leptons
 - $p_{\rm T} > 25 \, {\rm GeV}, \, |\eta| < 2.5$
 - $E_{\mathrm{T}}^{\mathrm{miss}} > 30 \,\mathrm{GeV}$
 - $H_{\rm T} > 130 \, {\rm GeV}$
 - In the case of same-flavour leptons:
 - ullet Veto $M_{\ell\ell}$ within 10 GeV of Z mass
- $t\bar{t}$ reconstruction:
 - KIN method solves for neutrinos and picks solution with lowest $t\bar{t}$ mass
- Fully Bayesian Unfolding (FBU)

Variable	data
$\overline{A_c}$	0.021 ± 0.016
A_{s}^{lep}	0.008 ± 0.006

ATLAS dilepton results - Phys. Rev. D 94, 032006 (2016)

ullet A_c and A_c^{lep} for different bins of $m_{tar{t}}$, $|eta_{z,tar{t}}|$ and $p_{
m T}^{tar{t}}$

• A_c Vs A_c^{lep} , shown for a selection of BSM theories

- Results are consistent with the Standard Model
- BSM models are not excluded

CMS ℓ +jets results - Phys. Lett. B 757 (2016) 154

- Event selection:
 - At least 4 jets:
 - $p_{\rm T} > 25 \, {\rm GeV}$, $|\eta| < 2.5$
 - One jet must be b-tagged
 - 1 isolated lepton (e or μ):
 - $\bullet \;\; e: \; p_{\rm T} > 30 \, {\rm GeV}, \; |\eta| < 2.5$
 - $\mu: p_{\mathrm{T}} > 26 \, \mathrm{GeV}, \, |\eta| < 2.1$
- $t\bar{t}$ reconstruction:
 - Kinematic likelihood method
- Unfolding via generalized matrix inversion
- Inclusive results:

Variable	data
A_c	$0.0010 \pm 0.0068 \pm 0.0037$

CMS ℓ +jets results - Phys. Lett. B 757 (2016) 154

ullet A_c as a function of $|y_{tar{t}}|$, $p_{\mathrm{T}}^{tar{t}}$ and $m_{tar{t}}$

- Shown for 2 different binnings in $m_{t\bar{t}}$
- BSM Prediction not available for $p_{\rm T}^{t\bar{t}}$
- New physics excluded at scales below 1.5 TeV at 95% C.L.

ATLAS $\ell+$ jets results - Eur. Phys. J. C76 (2016) 87

- Event selection:
 - At least 4 jets:

$$oldsymbol{
ho}_{
m T} > 25$$
 GeV, $|\eta| < 2.5$

- 1 isolated lepton (e or μ):
 - $e: p_T > 25 \text{ GeV}, |\eta| < 2.47$
 - $\mu : p_T > 25 \text{ GeV}, |\eta| < 2.5$
- Events binned by 0,1,2 b-tags
- $t\bar{t}$ reconstruction:
 - Kinematic likelihood method
- Fully Bayesian Unfolding (FBU)
- Inclusive results:

Variable	data
A_{-}	0.009 + 0.005

ATLAS $\ell+j$ ets results - Eur. Phys. J. C76 (2016) 87

ullet A_c as a function of $m_{tar{t}}$, $|eta_{z,tar{t}}|$ and $p_{
m T}^{tar{t}}$

p_{T,ff} [GeV]

- ullet BSM Prediction not available for $p_{\mathrm{T}}^{tar{t}}$
- Results compatible with SM and BSM models

-0.06

LHC A_c Vs Tevatron A_{fb} - Eur. Phys. J. C76 (2016) 87

- Inclusive ATLAS and CMS A_c Vs CDF and D0 A_{fb}
- Various BSM models are shown:
 - W' boson, heavy axigluon (G_{μ}) , scaler isodoublet (ϕ)
 - Colour-triplet scalar (ω^4) , colour-sectec scalar (Ω^4)
- Right plot is zoomed-in version of left plot

Phase-space for parameters of BSM models shown is limited

CMS template method results - Phys. Rev. D 93, 034014 (2016)

- Symmetric and asymmetric component of MC template is sensitive to:
 - $\Upsilon_{t\bar{t}} = \tanh \Delta |y_{t\bar{t}}|$
- Similar event selection to ℓ +jets
- More precise than \(\ell + \) jets measurement with unfolding
- Larger modelling uncertainties

Variable	data
$\overline{A_c}$	$0.0033 \pm 0.0026 \pm 0.0033$

 A_c^y (%)

ATLAS boosted results - Phys. Lett. B 756 (2016) 756

- Boosted $\ell+$ jets analysis
- Greater sensitivity to BSM
- Event selection Leptonic *t* decay:
 - 1 isolated lepton $p_{\rm T} > 25\,{\rm GeV}$
 - $E_{\rm T}^{\rm miss} > 20 \, {\rm GeV}$
 - $E_{\rm T}^{\rm miss} + m_{\rm T}^w > 60 \,{\rm GeV}$
 - Highest $p_{\rm T}$ jet(R=0.4)
- Event selection Hadronic t decay:
 - 1 large-R jet(R = 1.0)
 - Trimmed: rsub=0.3
 - $p_{\rm T} > 300 \, {\rm GeV}$
 - $m_{\rm iet}^{
 m trim} > 100\,{\rm GeV}$
- $m_{t\bar{t}} > 750 \,\text{GeV}$
- Fully Bayesian Unfolding (FBU)

ATLAS boosted

ATLAS boosted results - Phys. Lett. B 756 (2016) 756

$m_{tar{t}}$	data	SM prediction
> 0.75 TeV	$(4.2 \pm 3.2)\%$	$(1.60 \pm 0.004)\%$
0.75 — 0.9 TeV	$(2.2 \pm 7.3)\%$	$(1.42 \pm 0.004)\%$
$0.9-1.3\mathrm{TeV}$	$(8.6 \pm 4.4)\%$	$(1.75 \pm 0.05)\%$
> 1.3 TeV	$(-2.9 \pm 15.0)\%$	$(2.55 \pm 0.18)\%$

• $m_{t\bar{t}} > 0.75 \,\text{TeV}$

• $m_{t\bar{t}} > 1.3 \,\text{TeV}$

Summary of A_c

ullet A summary of all inclusive measurements of A_c

CP violation at CMS - CMS TOP-16-001

- First measurement of CP violation using $t\bar{t}$ events
- Based on the T-odd triple product correlations
- Semi-leptonic $t\bar{t}$ event selection
 - Similar event selection to CMS ℓ +jets A_c analysis
- 4 CP-sensitive observables, O_i.
- CP-asymmetry expressed as:

$$A_{CP}(O_i) = \frac{N(O_i > 0) - N(O_i < 0)}{N(O_i > 0) + N(O_i < 0)}$$

• Any non-zero $A_{CP}(O_i)$ would hint a BSM physics

CP violation at CMS - CMS TOP-16-001

$A'_{CP}\left(O_i\right)$	e+jets	μ+jets	ℓ +jets
O_2	$-0.01 \pm 0.61 \pm 0.01$	$+0.50 \pm 0.56 \pm 0.02$	$+0.27 \pm 0.41 \pm 0.01$
O_3	$-0.34 \pm 0.61 \pm 0.02$	$-1.03 \pm 0.56 \pm 0.04$	$-0.71 \pm 0.41 \pm 0.03$
O_4	$-0.24 \pm 0.61 \pm 0.02$	$-0.49 \pm 0.56 \pm 0.04$	$-0.38 \pm 0.41 \pm 0.03$
O_7	$-0.42 \pm 0.61 \pm 0.00$	$+0.46 \pm 0.56 \pm 0.01$	$-0.06 \pm 0.41 \pm 0.01$

CP violation at CMS - CMS TOP-16-001

- Measured asymmetries show no evidence for CP-violation
- In agreement with Standard Model prediction

- CP Violation occurs in neutral B-meson decays
- $t\bar{t}$ events offer an alternative b-quark production mechanism compared to b-factories such as BaBar and Belle
- Hard lepton from W-boson decay in semileptonic $t\bar{t}$ allows determination of b-quark charge $(t \to bW^+ \to b\ell^+\nu)$
- Charge of soft muon from $(b \to X \mu \nu)$ probes decay chain • Tag jets containing a soft muon (SMT algorithm)
- Inclusive top decay chains which produce 2 leptons
- Same Sign
- $t \to \ell^+ \nu \ (b \to \bar{b}) \to \ell^+ \ell^+ X$
- $t \to \ell^+ \nu (b \to c) \to \ell^+ \ell^+ X$
- $t \rightarrow \ell^+ \nu \ (b \rightarrow \bar{b} \rightarrow c\bar{c}) \rightarrow \ell^+ \ell^+ X$

- Opposite Sign
- $t \rightarrow \ell^+ \nu b \rightarrow \ell^+ \ell^- X$
- $t \to \ell^+ \nu (b \to \bar{b} \to \bar{c}) \to \ell^+ \ell^- X$
- $t \to \ell^+ \nu (b \to c\bar{c}) \to \ell^+ \ell^- X$
- These processes are sensitive to CPV in $B_q \bar{B}_q$ (q = d, s) mixing, semileptonic b and c decays and $b \rightarrow c$
- Theory paper: PRL 110,232002 (2013)

- ullet Use semileptonic $tar{t}$ events in which B-hadron decays to a muon
- Consider number of SMT muons, N^{ab} , where:
 - a: Charge of W-lepton ⇒ identifies initial charge of b
 b: Charge of SMT Muon ⇒ probes final state for CPV
- Consider probability of initial b decaying to a lepton ℓ

Probability of illitral
$$D$$
 decaying to a repton ℓ

$$P(b \to \ell^{+}) = \frac{N(b \to \ell^{-})}{N(b \to \ell^{-}) + N(b \to \ell^{+})} = \frac{N^{++}}{N^{+-} + N^{++}} = \frac{N^{++}}{N^{+}}$$

$$P(\bar{b} \to \ell^{-}) = \frac{N(\bar{b} \to \ell^{-})}{N(\bar{b} \to \ell^{-}) + N(\bar{b} \to \ell^{+})} = \frac{N^{--}}{N^{--} + N^{-+}} = \frac{N^{--}}{N^{-}}$$

$$P(b \to \ell^{-}) = \frac{N(b \to \ell^{-})}{N(b \to \ell^{-}) + N(b \to \ell^{+})} = \frac{N^{+-}}{N^{+-} + N^{++}} = \frac{N^{+-}}{N^{+}}$$

$$P(\bar{b} \to \ell^{+}) = \frac{N(\bar{b} \to \ell^{+})}{N(\bar{b} \to \ell^{-}) + N(\bar{b} \to \ell^{+})} = \frac{N^{-+}}{N^{--} + N^{-+}} = \frac{N^{-+}}{N^{--}}$$

• Measure same- and opposite-sign charge asymmetries:

$$A^{SS} = \frac{P(b \to \ell^+) - P(\bar{b} \to \ell^-)}{P(b \to \ell^+) + P(\bar{b} \to \ell^-)} \qquad A^{OS} = \frac{P(b \to \ell^-) - P(\bar{b} \to \ell^+)}{P(b \to \ell^-) + P(\bar{b} \to \ell^+)}$$

$$A^{SS} = \frac{\left(\frac{N^{++}}{N^{+}} - \frac{N^{--}}{N^{-}}\right)}{\left(\frac{N^{++}}{N^{+}} + \frac{N^{--}}{N^{-}}\right)} \qquad A^{OS} = \frac{\left(\frac{N^{+-}}{N^{+}} - \frac{N^{-+}}{N^{-}}\right)}{\left(\frac{N^{+-}}{N^{+}} + \frac{N^{-+}}{N^{-}}\right)}$$

- **①** Perform a "standard" $t\bar{t}$ $\ell+$ jets event selection
- Oouble tag jets with displaced-vertex and SMT algorithm
- **9** Fully reconstruct $t\bar{t}$ event with KLFitter
 - KLFitter tells us if an SMT muon is same- or different-top
 - Allows a determination of initial charge of the b
 - For same-top SMT muons : $W^\pm \Rightarrow b^\mp$
 - ullet For different-top SMT muons : $W^\pm \Rightarrow b^\pm$
 - ullet We get this correct with a purity of $\sim 80\%$
- Unfold data to a fiducial volume and measure CP asymmetries
- Fit results to obtain limits on direct and mixing CP parameters
- Same Top SMT Muon
- \bar{q} w \bar{t} t b

Different Top SMT Muon

- All results are consistent with the Standard Model
- Largest uncertainty on all results is statistical
- First ever measurement of $A_{\rm dir}^{\rm bc}$
- Strengthens 2σ limit on $A_{
 m dir}^{
 m c\ell}$, equivalent limit for $A_{
 m dir}^{
 m b\ell}$

Summary

- Multiple measurements of A_c and A_c^{lep}
 - $\bullet \ \, {\sf Dilepton \ and} \ \ell {+} {\sf jets}$
 - Resolved and boosted
 - Measured differential in many variables
- ullet CP-violation using $tar{t}$ events is now producing results
 - Very exciting future
 - A new frontier for the CKM community?
- All ATLAS and CMS measurements are at 8 TeV
 - Statistical uncertainties are currently large
 - Anticipate future 13 TeV measurements