

Exploring the Single Slit Diffraction Experiment - some meaningful extensions

Anantapur Campus

A.P., India- 515001

The usual Fraunhofer diffraction by a single slit experiment

Fraunhofer Diffraction:

The light incident on the slit has a plane wavefront the screen is at a distance large compared to the size of the diffracting structure.

Pattern: Central Maximum at $\theta = 0$,

Secondary maxima at $\theta = \pm 1.43\pi$, $\pm 2.46\pi$, $\pm 3.47\pi$

Minima (equispaced) at $\theta = m\pi$; where m = 0, ±1, ±2...

Single-slit diffraction due to a plane wavefront

1. Uniform intensity Profile vs Gaussian Beam Profile at slit

□ In a uniform beam profile the intensity distribution and electric field amplitude are uniform. $E = E_0$ (across the width of the slit)

□ In a Gaussian profile, the intensity distribution and the electric field amplitude follow the Gaussian distribution.

$$E(r,z) = E_0 \frac{\omega_0}{\omega(z)} exp\left(\frac{-r^2}{\omega(z)^2}\right)$$
 (simplified)

Uniform light intensity at slit									
I _{centralmax}	First minimum position (rad)	I centralmax I sec max1	I centralmax I sec max2	I centralmax I sec max3					
1	±3.14	21.1815	60.441	117.744					

Numerical solution of the single slit Fraunhofer diffraction Integral.

- A C program was written to solve the diffraction integral of single slit diffraction by using Simpson's 1/3 rule, for uniform intensity of light across the slit width
- The numerically calculated pattern gave exact results as expected for the single slit Fraunhofer diffraction

Next the C-program was written for the case where the electric field and intensity had a Gaussian profile.

$$E = E_o \ e^{-s^2/\omega^2}$$

Results obtained:

 As the beam width was varied from w = 10 b to w = b, the intensity of the central maxima and the secondary maxima decreased and the ratios of the intensities of central maxima to the secondary maximas increased.

-15

-10

The minima moved slightly outward

Fraunhofer diffraction from single slit numerically computed result table – Electric field having Gaussian profile incident on slit

Beam width (mm)	Slit width (mm)	I _{centralmax} (units)	I centralmax I sec max1 (units)	I centralmax I sec max2 (units)	I centralmax I sec max3 (units)	Sour	ce 0	
2.9	0.29	0.998335	21.252	60.641	118.132		Slit	Screen
2.02	0.20	0.00((07	21 226		110 544	Beam width	Angular positi	ion (rad) of the
2.03 0.29	0.996607	21.326	60.85	118.544	(mm)	1 st minimum	2 nd minimum	
1.45	0.29	0.993364	21.467	61.246	119.323	2.9	-3.2	-6.35
0.07	0.20	0.001710	21.001	(2.712	100 105	2.03	-3.2	-6.35
0.87	0.29	0.981/19	21.991	62./13	122.195	1.45	-3.2	-6.35
0.58	0.29	0.959521	23.053	65.707	128.055	0.87	-3.2	-6.4
						0.58	-3.25	-6.4
0.29	0.29	0.851121	30.14	85.129	165.458	0.29	-3.35	-6.45

Ť

____D_____|

2. Effect of distance between the light source and slit

> In Fraunhofer diffraction, the distance to the screen is kept very large and Fraunhofer diffraction limit is mostly studied only by varying the slit-screen distance. The source-slit distance is often neglected. \succ We studied the pattern by changing source slit distance, while keeping the slit-screen distance large, fixed.

Source used: He-Ne Laser (632.8nm) Distance between slit - screen=146 cm Slit width= 0.29 mm The experiment was done for 5 different laser-slit distances

(2)

analysis

Plot

i) Laser to slit distance = 150 cm

Variation of spot size of the laser beam with distance

THANK YOU