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Outline

Lecture | — Low- and intermediate-energy interactions

* Particle production threshold: resonances
* Intermediate energies: two-string models
e Extension to nuclei and photons

Lecture 2 - Interactions at very high energy
* Jets and minijets, multiple interactions
* Unitarization and saturation scenarios
* Comparison of models and uncertainties of extrapolations

Lecture 3 - Air shower phenomenology and accelerator data
* Relation between hadronic interactions and air showers
* Accelerator experiments & discrimination potential of LHC
 Comparison of model predictions with accelerator data
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Pedestrian introduction to Reggeon and Pomeron



Basic relations

Theoretical results based on very general assumptions

* scattering amplitude exists

e maximum analyticity of scattering amplitude
* crossing allowed as result of analyticty

* unitarity (i.e. conservation of probability)

Lorentz-invariant description with
Mandelstam variables

' S = (pa +pb)2
/ \ t = (p, —Pa)2
Pb _ P)
time

In center-of-mass system: ¢t = —4p2\qsin®(0/2)



Scattering amplitude and optical theorem

Scatering amplitude most generally defined as complex function through

pc\ . / Pa dGa,b—m’,b’ B 1 n (S t)lz
dz_ T 16TC 2 a,b—>a/,b/ )
/ \ | A)
Pb . Pp
time
Special case: elastic scattering dOe 1 5
/ / — — 2 ‘A(Svt)|
a = da b — b dt 167s
Optical theorem (unitarity, conservation of probability)
1. . .
Ciot = — — lim [A(s+ie,t =0) —A(s —ig,t = 0)]
25 1e—0 1

Otot = ;Sm(A(S,I — 0))



The classical Reggeon (and Pomeron)

Aim: calculation of A(s,t) at high energy



Partial wave expansion of scattering amplitude

Example: T1-p scattering A+

(o@)

A(s,t) =161y (21 + 1)a;(s)P;(cos6)

N N

r lynomial
Angular momentum Legendre polynomials

of resonance

From Breit-Wigner resonance

. High energy: more and more
cross section follows 4 gy

resonances contribute to sum since

1
1
s —m? +imy L o (s) = ESm(A(s,t —0);) <21+1)—

aj ~



Analyticity: crossing from s- to t-channel

w ++
A
s-channel
p
—
time
t-channel et
A

Partial wave amplitude for
given | after crossing

1
[ — mlz + imyl;

Cll(t) ~

Exchange of s and t

A(s,t) = 16m)_(21+ 1)a; (1) P (z)
z

Scattering angle written in terms of
Mandelstam variables, s and t exchanged

28
I — 380

+1

Zr = Ccos0; =



Sommerfeld-Watson transformation

Aim: rewrite discrete sum as integral over angular momentum | in complex plane

Cauchy theorem: closed integral over analytic function equals sum of residuals (poles)

Im1
complex | plane

C Contour closed at +infinity

Result

167 | + e M
A(S,l‘): Z ETS dl (2l—|—1) ( . ‘ ) al(t) P[(—Zt), T==1
=11 <l JC

_ Signature
Poles introduced for even and odd values of |

(separation of even/odd needed for convergence of integral)



Deformation of integration contour from C1| to C2

complex I plane

Im1
A
S :.: :C1 —
NV : Re 1l
v
8

Hopes:
* integrand vanishes fast enough for large complex | to neglect contribution at infinity
(this can be shown based on properties of Legendre polynomials and amplitudes)

e contribution from integration along imaginary | axis negligible (or const. term)
(this is just a hope and cannot be proven)

But: if there were no additional poles or singularities, integral (= amplitude) would vanish!



Analytic structure of partial wave amplitude

Chew-Frautschi plot 8 T T T
. 7 m’=(1127] - 0.459) GeV -
(initally found 1962) sl ¢ o250 -
= s 05(2350)
2
4 _
8 3 |
| 5 2 —
Mass-angular momentum relation E |
for given set of quantum numbers 0 |
-1 ] ] ] ] ] ] ]
o 1 2 3 4 5 6 7 8
mZZ — m% _I_A’%/Ll spin J
Partial litud i : : !
artial wave amplitude re-written ay ~ = ~
t—ms  t—(mi+ALL) [ —t/AL+m3 /A
Pole in | 1 Regge trajectory

=) u(t) = (¢ —mf) /A,




Deformation of integration contour with Regge pole

complex 1 plane
Im 1

A
pole :
CCy Cauchy theorem: Summation

C/_\/ ! ! ! ! ! ! over all poles along real | axis is
Rel equal to single pole contribution

at complex | = X(t)

\4

16w ( | 4+ 1e ™
_|_

sin(7tl) ) a(t) P(—z), t==I




High-energy limit: Regge amplitude

Introduction of signature factor

n(er)) = -

1+ e mo?)
EI0)

Regge amplitude



Cross section, Reggeon, Pomeron

Optical theorem

Grot = %Sm(A(s,t 5 0))

Total cross section for one Regge pole

"t"tii‘m{n(a(r)) B(1) (())”} e (;)“@H

0)—1
There could be several Regge poles - _ Z (s o (0)
(Regge trajectories of different quantum numbers) tot — - 8k 50

Problem: all known Regge trajectories have &(0) < | but ctotal ross section rises with s

Pomeranchuk (1958): there must be a Reggeon with &x(0) > |, now called Pomeron



Reggeon: quasi-particle with fixed quantum numbers

/
\

N/p

T Summation over all possible

particles exchanged in t-
channel can be represented
by one or several quasi-
particles

AT

b

g

\
/

- m?=(1.127J - 0.459) GeV>

Reggeon have quantum numbers of

exchanged particles but non-integer * ag(2450) -

spin given by &(t) E : p5(2350)
- a,(1320) i
"8 3r 03(1690) .

mass

a,(1320)
Pomeron is postulated "special” and
universal Reggeon with x(0) > | to
describe rise of cross sections

(glue ball exchange?)

—_ S e N W A 1T & g ®
I




Example: Donnachie-Landshoff fit to cross sections

120:"""| T L L B B LI |
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Pomeron term

Reggeon term
(universal) (non-universal)

10000

—0.45

Signature factor (analyticity) determines
ratio of real to imaginary part of amplitude,
also well described !
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(Donnachie & Landshoff, PLB 1992)



Pomeron and Reggeon in non-perturbative QCD

Topological expansion of QCD



Large Nc-Nr expansion of QCD

Problem: no small coupling constant for perturbative expansion in soft physics

't Hooft,Veneziano, Witten (1974) Ny — o0 202 ~
& Ne =
N./ns = const

@ @ @ Graphs can be sorted according
/ to number of colors and power

Z

@ \\DD \/X/

of coupling constant
Topology of graph: surface on which it can be drawn without crossing color lines

Planar diagrams preferred: planar diagram theory of QCD



Color flow topologies in large-N/ns QCD (i)

Partons only asymptotically free, work with “strings” instead

uark
Example: N - quarl
meson propagation .44’ 0009909 s
50000 ¥A o9 (O

708
. /// ’,’ ‘\
fime - N —
anti-quark —

filled with quarks & gluons

q\‘é(r"a‘;&'ﬁg“"““’m)

n\/n q

Scattering process:




Color flow topologies in large-N/nf QCD (ii

q
-
q
Reggeon exchange

flat topology (dependence

on valence quark combinatorics)
q
/_"—\
qq

i
Pomeron exchange q
cylinder topology (does not depend
on flavour of scattering particles)
q o

q9

time
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Graphical representation of optical theorem (i)

Standard method of calculating cross sections

1
Otot = EZ/dPX ’Mpp—>X‘2

s\ b |

1]
QU
oe
||

—

B

sum over all integration over phase
final states space of final state particles
a 2
— _Z/dPX pp—X PP—>X =
b
Optical theorem (elastic scattering) . .
: 3
— ~Sm(Aca(s,t =0)) m

b ;\ b

sum over all intermediate states 21



Graphical representation of optical theorem (ii

a a

— Field theory: particle propagator

d*k
k2 —m? +ie

Im E—

particle put on mass shell
Imaginary part of particle propagator

4 3
Sm( a’k ) = §(k* —m*)d*k = @k

k> —m? +ig 2F

a a a a Calculating imaginary
part shows particle
configurations of final

state for total cross
A b

section
b b b / unitarity cut

cut particle lines correspond to particles in final state

Sm
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Unitarity cuts (optical theorem): final state particles

d q
= C —
q q =
< . .
= Unitarity cut of Reggeon
— = exchange: chain of hadrons
=
q q —
<
qq qq
unitarity cut
b4 =
— == =
q =
= = Pomeron exchange:
== two chains of hadrons
q = ==
J
T =
FEEEE——
qaq

elastic scattering inelastic scattering

23



Pomeron and Reggeon in perturbative QCD

Scattering by gluon exchange

24



QCD color flow configurations (i)

Partonic view:

@ —

Simplest scenario:

gluon
one-gluon exchange

Color flow:
q

@ - w> aq
quark i
One-gluon exchange:
. two color fields (strings)
qaq

25



QCD color flow configurations (i

Partonic view:

.

@ <
A

Color flow:

gluon

One-gluon exchange with
additional radiations

@ d/i;quark

quark

q

7/
<

Initial and final state radiation
does not change topology

26



Gluon-gluon scattering and cylinder topology

Generic diagram of hard scattering

dGi, j—k,l

time 1
— 2 2 2
( Cocp = Z 1—|—8kl /dxl dx; /pcuoffdpj_ fi(xlaQ ) fj(x27Q )

i jkl T dpi

/

Standard procedure: total gluon-gluon cross section obtained by squaring matrix element

Same calculation using optical theorem: need to cut graph for elastic scattering

-

leading contribution: cylinder topology

ANANNAN N
ANANANNAN

" unitarity cut

27



Modern understanding of Pomeron

e Quasi-particle that effectively accounts for all exchanged hadronic states
 Amplitude exhibits power-law dependence on energy

* Regge trajectory of Pomeron: exchanged particles might be glue balls

* Pomeron trajectory only phenomenologically known

e Large Nc-nf approximation of QCD: Pomeron corresponds to cylinder topology
* Final state configuration: leading contribution is two chains (strings) of hadrons

* Gluon-gluon scattering in pQCD corresponds to "hard” contribution to Pomeron

a0 ¢ =
g
;jé _— == =
- q = <
q = <
< <
—> ==
Multiple exchanges & interaction of q § ==
J
. . . M
quasi-particles (Pomerons): i =
=
@ s qq

Gribov’s Reggeon Field Theory



