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Lecture 1 – Low- and intermediate-energy interactions

• Particle production threshold: resonances
• Intermediate energies: two-string models
• Extension to nuclei and photons

Lecture 2 – Interactions at very high energy
• Jets and minijets, multiple interactions
• Unitarization and saturation scenarios
• Comparison of models and uncertainties of extrapolations

Lecture 3 – Air shower phenomenology and accelerator data
• Relation between hadronic interactions and air showers
• Accelerator experiments & discrimination potential of LHC
• Comparison of model predictions with accelerator data
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Pedestrian introduction to Reggeon and Pomeron



Lorentz-invariant description with
Mandelstam variables

Basic relations

4

Theoretical results based on very general assumptions

• scattering amplitude exists
• maximum analyticity of scattering amplitude
• crossing allowed as result of analyticty
• unitarity (i.e. conservation of probability)

pa

pb

p�a

p�b

s = (pa + pb)
2

t = (p�a − pa)
2

t =−4p2
CMS sin2(θ/2)In center-of-mass system:

time



Scattering amplitude and optical theorem
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dσela

dt
=

1
16πs2 |A(s, t)|

2

Scatering amplitude most generally defined as complex function through

dσa,b→a�,b�

dt
=

1
16πs2

��Aa,b→a�,b�(s, t)
��2

pa

pb

p�a

p�b

Special case: elastic scattering

a = a� b = b�

Optical theorem (unitarity, conservation of probability)

σtot =
1
2s

1
i

lim
ε→0

[A(s+ iε, t = 0)−A(s− iε, t = 0)]

σtot =
1
s

ℑm(A(s, t → 0))

time



The classical Reggeon (and Pomeron)

Aim: calculation of A(s,t) at high energy
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Partial wave expansion of scattering amplitude
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A(s, t) = 16π
∞

∑
l=0

(2l +1)al(s)Pl(cosθ)

p p

++
++

+

p

++

p-

-

(a) (b)
time  ->

Example: π-p scattering

Legendre polynomialsAngular momentum
of resonance

al ∼
1

s−m2
l + imlΓl

From Breit-Wigner resonance
cross section follows High energy: more and more

resonances contribute to sum since

σtot
l (s) =

1
s

ℑm(A(s, t → 0)|l)≤ (2l +1)
4π
k2

time



Analyticity: crossing from s- to t-channel
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A(s, t) = 16π∑
l
(2l +1)al(t)Pl(zt)

p p

++
++

+

p

++

p-

-

(a) (b)
time  ->

s-channel

p p

++
++

+

p

++

p-

-

(a) (b)
time  ->

t-channel

zt = cosθt =
2s

t − s0
+1

Scattering angle written in terms of 
Mandelstam variables, s and t exchanged

Exchange of s and t

al(t)∼
1

t −m2
l + imlΓl

Partial wave amplitude for 
given l after crossing

time



Sommerfeld-Watson transformation
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Aim: rewrite discrete sum as integral over angular momentum l in complex plane

A(s, t) = ∑
τ=±1

16π
2i

�

C1
dl (2l +1)

�
1+ τe−iπl

sin(πl)

�
al(t) Pl(−zt), τ =±1

Cauchy theorem: closed integral over analytic function equals sum of residuals (poles)

Poles introduced for even and odd values of l
(separation of even/odd needed for convergence of integral)

Signature

!"#$

%&

'(#$

Contour closed at +infinity

complex l plane

Result



Deformation of integration contour from C1 to C2
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Re l

C1

C2

pole

complex l plane
Im l

(a)
Hopes: 

• integrand vanishes fast enough for large complex l to neglect contribution at infinity
(this can be shown based on properties of Legendre polynomials and amplitudes)

• contribution from integration along imaginary l axis negligible (or const. term)
(this is just a hope and cannot be proven)

But: if there were no additional poles or singularities, integral (= amplitude) would vanish!



Analytic structure of partial wave amplitude
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(initally found 1962)

m2
l = m2

0 +∆2
m l

Mass-angular momentum relation
for given set of quantum numbers

al ∼
1

l −α(t)

Partial wave amplitude re-written

Pole in l

al ∼
1

t −m2
l
=

1
t − (m2

0 +∆2
ml)

∼ 1
l − t/∆2

m +m2
0/∆2

m

α(t) = (t −m2
0)/∆2

m

Regge trajectory



Deformation of integration contour with Regge pole
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Re l

C1

C2

pole

complex l plane
Im l

(a)

Cauchy theorem: Summation 
over all poles along real l axis is 
equal to single pole contribution 
at complex l = α(t)

A(s, t) = ∑
τ=±1

16π
2i

�

C1
dl (2l +1)

�
1+ τe−iπl

sin(πl)

�
al(t) Pl(−zt), τ =±1

=−1+ τe−iπα(t)

sin(πα(t))
β(t)Pα(t)(−zt)



High-energy limit: Regge amplitude
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A(s, t) =−1+ τe−iπα(t)

sin(πα(t))
β(t)Pα(t)(−zt)

zt = cosθt =
2s

t − s0
+1

Pα(t)

�
− 2s

t − s0
−1

�
s→∞−→

�
s
s0

�α(t)
High-energy limit of Legendre polynomial

η(α(t)) =−1+ τe−iπα(t)

sin(πα(t))

Introduction of signature factor

A(s, t) = η(α(t)) β(t)
�

s
s0

�α(t)Regge amplitude



Cross section, Reggeon, Pomeron
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σtot =
1
s

ℑm(A(s, t → 0))

Optical theorem

σtot =
1
s

ℑm

�
η(α(t)) β(t)

�
s
s0

�α(t)
�

t→0

= g2
�

s
s0

�α(0)−1

Total cross section for one Regge pole

σtot = ∑
k

g2
k

�
s
s0

�αk(0)−1
There could be several Regge poles
(Regge trajectories of different quantum numbers)

Problem: all known Regge trajectories have α(0) < 1 but ctotal ross section rises with s

Pomeranchuk (1958): there must be a Reggeon with α(0) > 1, now called Pomeron



Reggeon: quasi-particle with fixed quantum numbers
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Summation over all possible 
particles exchanged in t-
channel can be represented 
by one or several quasi-
particles

∑
k

hk

Reggeon have quantum numbers of 
exchanged particles but non-integer 
spin given by α(t)
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Pomeron is postulated ´special´ and 
universal Reggeon with α(0) > 1 to 
describe rise of cross sections 
(glue ball exchange?)
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Example: Donnachie-Landshoff fit to cross sections
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Signature factor (analyticity) determines 
ratio of real to imaginary part of amplitude, 
also well described ! 

(Donnachie & Landshoff, PLB 1992)

Pomeron term
(universal)

Reggeon term
(non-universal)

σtot = g2
P

�
s
s0

�0.08
+g2

R

�
s
s0

�−0.45



Pomeron and Reggeon in non-perturbative QCD

Topological expansion of QCD
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Large Nc-Nf expansion of QCD
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Topological expansion of QCD

• limit Nc →∞, Nc/nf = const., g2N2
c ∼ 1
(’t Hooft, Veneziano, Witten)

• example:

• planar graph (reggeon):

!>

unitarity cut

q

qq

q

q

qq

q

q

q

Problem: no small coupling constant for perturbative expansion in soft physics

Nc → ∞´t Hooft, Veneziano, Witten (1974)

Nc/n f = const
g2N2

c � 1

Graphs can be sorted according 
to number of colors and power 
of coupling constant

Planar diagrams preferred: planar diagram theory of QCD

Topology of graph: surface on which it can be drawn without crossing color lines



Color flow topologies in large-Nc/nf QCD (i)

Partons only asymptotically free, work with ´strings´ instead

quark

anti-quark

Example: 
meson propagation

time

q

qq

q

q
Scattering process:

19

filled with quarks & gluons
(planar configurations)

pp

ππ



Color flow topologies in large-Nc/nf QCD (ii)

qq

q

q

q

Pomeron exchange
cylinder topology (does not depend 
on flavour of scattering particles)

q

qq

q

q

Reggeon exchange
flat topology (dependence 
on valence quark combinatorics)

time
20



Graphical representation of optical theorem (i)
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σtot =
1
Φ ∑

X

�
dPX |Mpp→X |2

Standard method of calculating cross sections

sum over all
final states

integration over phase
space of final state particles

=
1
Φ ∑

X

�
dPX M+

pp→X Mpp→X

Unitarity and optical theorem

total cross section:

σtot =
1

Φ

�
dPX |Mpp→X|2

=
1

Φ

�
dPX Mpp→XM+

pp→X

phase space integration

d3k

2E
= δ(k2 −m2)d4k

∼ �m

�
1

k2 −m2 + i�

�
d4k

results in particle propagators

= Im

=

=

2

unitarity cut

optical theorem:
1

s
�m App→pp(s, t = 0) =

1

Φ

�
dPX |Mpp→X |2 = σtot

Unitarity and optical theorem

total cross section:

σtot =
1

Φ

�
dPX |Mpp→X|2

=
1

Φ

�
dPX Mpp→XM+

pp→X

phase space integration

d3k

2E
= δ(k2 −m2)d4k

∼ �m

�
1

k2 −m2 + i�

�
d4k

results in particle propagators

= Im

=

=

2

unitarity cut

optical theorem:
1

s
�m App→pp(s, t = 0) =

1

Φ

�
dPX |Mpp→X |2 = σtot

=
1
s

ℑm(Aela(s, t = 0))

Optical theorem (elastic scattering)

Unitarity and optical theorem

total cross section:

σtot =
1

Φ

�
dPX |Mpp→X|2

=
1

Φ

�
dPX Mpp→XM+

pp→X

phase space integration

d3k

2E
= δ(k2 −m2)d4k

∼ �m

�
1

k2 −m2 + i�

�
d4k

results in particle propagators

= Im

=

=

2

unitarity cut

optical theorem:
1

s
�m App→pp(s, t = 0) =

1

Φ

�
dPX |Mpp→X |2 = σtot

ℑm

a

b

b

a

bb

a a

sum over all intermediate states

dPX = ∏
j

d3k j

2E j



Graphical representation of optical theorem (ii)
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Unitarity and optical theorem

total cross section:

σtot =
1

Φ

�
dPX |Mpp→X|2

=
1

Φ

�
dPX Mpp→XM+

pp→X

phase space integration

d3k

2E
= δ(k2 −m2)d4k

∼ �m

�
1

k2 −m2 + i�

�
d4k

results in particle propagators

= Im

=

=

2

unitarity cut

optical theorem:
1

s
�m App→pp(s, t = 0) =

1

Φ

�
dPX |Mpp→X |2 = σtot

ℑm

bb

a a

Field theory: particle propagator

Imaginary part of particle propagator

d4k
k2 −m2 + iε

ℑm
�

d4k
k2 −m2 + iε

�
= δ(k2 −m2)d4k =

d3k
2E

Unitarity and optical theorem

total cross section:

σtot =
1

Φ

�
dPX |Mpp→X|2

=
1

Φ

�
dPX Mpp→XM+

pp→X

phase space integration

d3k

2E
= δ(k2 −m2)d4k

∼ �m

�
1

k2 −m2 + i�

�
d4k

results in particle propagators

= Im

=

=

2

unitarity cut

optical theorem:
1

s
�m App→pp(s, t = 0) =

1

Φ

�
dPX |Mpp→X |2 = σtot

Unitarity and optical theorem

total cross section:

σtot =
1

Φ

�
dPX |Mpp→X|2

=
1

Φ

�
dPX Mpp→XM+

pp→X

phase space integration

d3k

2E
= δ(k2 −m2)d4k

∼ �m

�
1

k2 −m2 + i�

�
d4k

results in particle propagators

= Im

=

=

2

unitarity cut

optical theorem:
1

s
�m App→pp(s, t = 0) =

1

Φ

�
dPX |Mpp→X |2 = σtot

ℑm

bb

a a a a

b
b

=

Calculating imaginary 
part shows particle 
configurations of final 
state for total cross 
section

cut particle lines correspond to particles in final state

particle put on mass shell



Unitarity cuts (optical theorem): final state particles

−>

qq

q

q

q

qq

q

qq

−>

unitarity cut

q

qq

q

q

qq

q

q

q

Unitarity cut of Reggeon
exchange: chain of hadrons

Pomeron exchange:
two chains of hadrons

elastic scattering inelastic scattering
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Pomeron and Reggeon in perturbative QCD

Scattering by gluon exchange

24



QCD color flow configurations (i)

Partonic view:

Color flow:

One-gluon exchange: 
two color fields (strings) 

25

Simplest scenario:
one-gluon exchange



QCD color flow configurations (ii)

Initial and final state radiation
does not change topology

Partonic view:

Color flow:

26

One-gluon exchange with 
additional radiations



Gluon-gluon scattering and cylinder topology
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Pomeron topology

• exchange of vacuum quantum numbers: pomeron

!>

qq

q

q

q

qq

q

qq

• two-gluon scattering in QCD-improved parton model:

unitarity cut

~ !>

Pomeron topology

• exchange of vacuum quantum numbers: pomeron

!>

qq

q

q

q

qq

q

qq

• two-gluon scattering in QCD-improved parton model:

unitarity cut

~ !>time

Generic diagram of hard scattering

Standard procedure: total gluon-gluon cross section obtained by squaring matrix element

σQCD = ∑
i, j,k,l

1
1+δkl

Z
dx1 dx2

Z

pcutoff
⊥

d p2
⊥ fi(x1,Q2) f j(x2,Q2)

dσi, j→k,l

d p⊥

Same calculation using optical theorem: need to cut graph for elastic scattering

leading contribution: cylinder topology



Modern understanding of Pomeron
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• Quasi-particle that effectively accounts for all exchanged hadronic states

• Amplitude exhibits power-law dependence on energy

• Regge trajectory of Pomeron: exchanged particles might be glue balls

• Pomeron trajectory only phenomenologically known

• Large Nc-nf approximation of QCD: Pomeron corresponds to cylinder topology

• Final state configuration: leading contribution is two chains (strings) of hadrons

• Gluon-gluon scattering in pQCD corresponds to ´hard´ contribution to Pomeron 

−>

qq

q

q

q

qq

q

qq

A(s, t) = η(α(t)) β(t)
�

s
s0

�α(t)

Multiple exchanges & interaction of 
quasi-particles (Pomerons): 
Gribov´s Reggeon Field Theory


