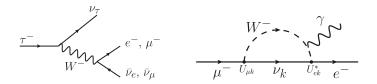
Lepton universality, flavor and number violation in B and τ decays at LHCb

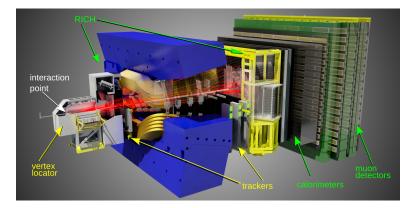
Paula Álvarez Cartelle Imperial College London

CKM, Mumbai

November 29, 2016


Imperial College London

Introduction


- In the Standard Model, couplings of the gauge bosons to leptons are independent of lepton flavour

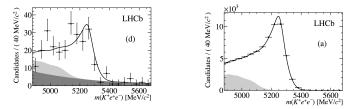
 → branching fractions of e, μ and τ differ only by phase space and helicity-suppressed contributions
- Lepton flavour violation has only been observed in neutrino oscillations $\rightarrow\,$ all charged LFV amplitudes are strongly suppressed
- Any sign of lepton flavour violation or lepton flavour non-universality would be a direct sign for new physics

The LHCb detector

• Forward arm spectrometer to study b- and c-hadron decays $(2 < \eta < 5)$

- Good vertex and impact parameter resolution ($\sigma(IP) = 15 + 29/pT)m$)
- Excellent momentum resolution ($\sigma(m_B) \sim 25 \, {
 m MeV}/c^2$ for 2-body decays)
- Excellent particle ID (μ ID 97% for ($\pi \rightarrow \mu$) misID of 1-3%)
- Versatile & efficient trigger

[JINST 3 (2008) S080005]

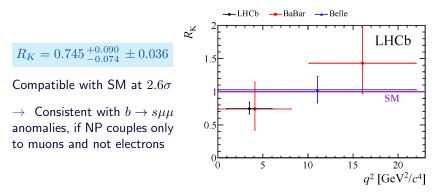

LFU in $B^+ \to K^+ l^+ l^-$

LHCb, PRL 113 (2014) 151601

$$R(K)^{SM} = \frac{BR(B^+ \to K^+ \mu^+ \mu^-)}{BR(B^+ \to K^+ e^+ e^-)} = 1 \pm \mathcal{O}(10^{-4})$$

[C. Bobeth et al., JHEP 07 (2007) 040]

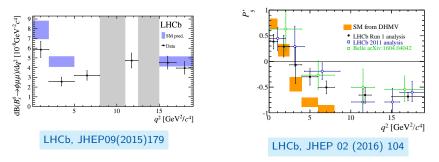
- FCNC process, only ocurring at loop level in the SM
- Measured relative to $B^+ \to K^+ J/\psi(l^+ l^-)$ to cancel experimental systematic associated to differences between electrons and muons



Note: FSR simulated using PHOTOS. Dominant effect to q^2 migration is Bremsstrahlung in the detector.

LFU in $B^+ \to K^+ l^+ l^-$

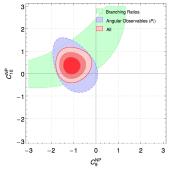
• Measurement performed with $3 \, {\rm fb}^{-1}$ of data, in $1 < q^2 < 6 \, {\rm GeV}/c^2$



ightarrow Clear motivation to explore related LFU ratios $(R_{K^{*0}}, R_{\phi}, ...)$

Anomalies in $b \rightarrow s \mu^+ \mu^-$ transitions

- Branching fractions of $B \to K^{(*)}\mu^+\mu^-$, $B_s \to \phi\mu^+\mu^-$ and $\Lambda_b \to \Lambda\mu^+\mu^-$ (1 σ to 3σ depending on final state)
- Angular analyses of $B_s \to \phi \mu^+ \mu^-$, $\Lambda_b \to \Lambda \mu^+ \mu^-$ and $B^0 \to K^{*0} \mu^+ \mu^-$ (~ 3σ)
- Lepton flavour universality in $B^+ \to K^+ l^+ l^-$ (2.6 σ)

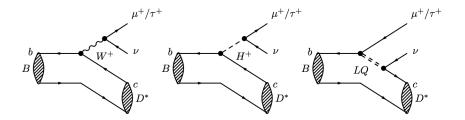

See F. Polci's talk yesterday (WG3)

Global fits to $b \rightarrow s \mu^+ \mu^-$ observables

Model independent approach

$$\mathcal{H}^{\text{eff}} \sim \sum_{i} (C_i^{SM} + \Delta C_i^{NP}) \mathcal{O}_i$$

where heavy fields are integrated out and Wilson coefficients (C_i) and operators (\mathcal{O}_i) encode coupling strength and Lorentz structure

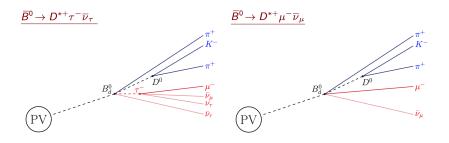

[Descotes-Genon et al, 1510.04239v3]

 \rightarrow Angular observables, BR's and R_K are compatible with a modified vector coupling $C_9^{\mu\mu} = -1$ and $\Delta C_9^{ee} = 0$

 $\rightarrow~$ Best fit $\sim 4\sigma$ from the SM prediction

 \rightarrow LFU ratios free from QCD uncertainties that may affect other observables

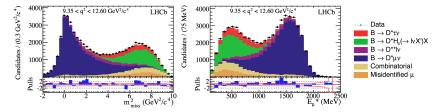
LFU in $B^0 \rightarrow D^{*-}l^+\nu_l$


- In the SM the only difference between the two decays is the mass of the lepton
- Theoretically clean

$$R(D^*)^{SM} = \frac{BR(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{BR(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})} = 0.252 \pm 0.003$$

[S.Fajfer et al., PRD85 (2012) 094025]

Experimental challenge

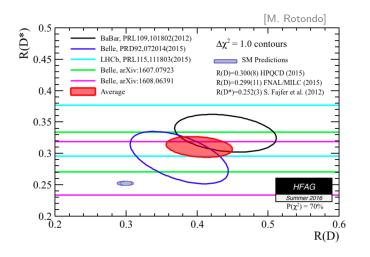


- Missing neutrinos \Rightarrow No narrow peak to fit (in any distribution) • Calculate m_{missing}^2 , q^2 and E_{μ} in approximate rest frame
- Main backgrounds are partially reconstructed B decays
 B → D^{*}μν, B → D^{**}μν, B → D^{*}D(μX)X ...
- Isolation MVA used to reject physics backgrounds with additional cuts and to select control samples of specific backgrounds

See C. Bozzi's talk on Thursday (WG2)

Result

- Three dimensional template fit $(m^2_{missing}, E_{\mu}, q^2$ shown)
 - Large MC samples for signal and physics backgrounds (data-driven syst.)
 - $\circ~$ Background from μ misID and combinatorial from data
- Shape and form factor dependence systematics included in the fit


The obtained result

 $R(D^*) = 0.336 \pm 0.027 \pm 0.030$

is consistent with the SM at 2.1σ level

$R(D^{(st)})$ status

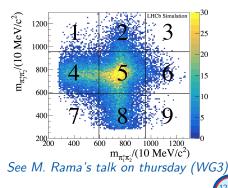
 \rightarrow Latest HFAG average: 3.9 σ from SM expectation (includes new result from Belle with $\tau \rightarrow \pi^+(\pi^0)\nu$)

Search for $B \to \tau^+ \tau^-$

LHCb-CONF-2016-01

- In the SM, difference between $B^0_{(s)} \to \mu\mu$ and $B^0_{(s)} \to \tau\tau$ comes through helicity suppression (lepton mass)
- Clean observables in the SM

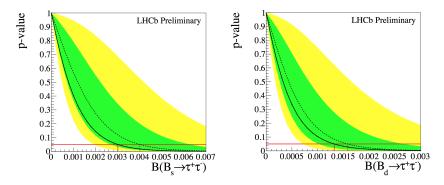
[C. Bobeth et al., PRL 96 (2006) 241802]


$$\mathcal{B}(B^0 \to \tau \tau)^{SM} = (2.22 \pm 0.19) \times 10^{-8}$$

$$\mathcal{B}(B^0_s \to \tau \tau)^{SM} = (7.73 \pm 0.49) \times 10^{-7}$$

LHCb search

• Fully hadronic τ decays, assumed dominated by


$$\tau \to a_1^-(\rho^0\pi^-)\nu_\tau \to \pi^+\pi^-\pi^-\nu_\tau$$

 Fit to a multivariate clasifier containing kinematic and topological information

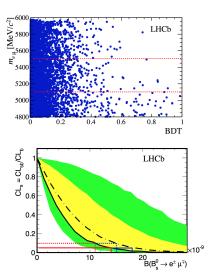
LFU & LFV @ LHCb

Search for $B \to \tau^+ \tau^-$

No signal is found, the obtained limits are

$$\begin{split} \mathcal{B}(B^0_s \to \tau^+ \tau^-) &< 3.0 \times 10^{-3} \ @\,95\% \ \mathrm{CL} \\ \mathcal{B}(B^0 \to \tau^+ \tau^-) &< 1.3 \times 10^{-3} \ @\,95\% \ \mathrm{CL} \end{split}$$

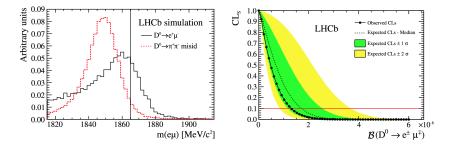
ightarrow Model-dependent result based on EvtGen simulation of au decay


LFU & LFV @ LHCb

Search for $B^0 \rightarrow e^{\pm} \mu^{\mp}$

- Search with $1 \, \text{fb}^{-1}$ of $7 \, \mathrm{TeV}$ data
 - $\circ~$ Combined search for B^0_s and B^0
 - Search invariant mass in bins of BDT
- No signal observed over background expectations
- Limits @ 90% CL

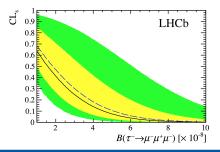
$$\begin{split} \mathcal{B}(B^0_s \to e^+ \mu^-) < 1.1 \times 10^{-9} \\ \mathcal{B}(B^0 \to e^+ \mu^-) < 2.8 \times 10^{-9} \end{split}$$


 $\times 20$ improvement with respect to previous measurements

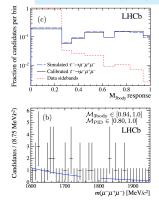
LHCb, PLB 754 (2016) 167

Search for $D^0 \rightarrow e^{\pm} \mu^{\mp}$

Search with full Run1 dataset (3 fb⁻¹)


- $\circ~$ Main background $D^0 \rightarrow \pi^+\pi^-~(BR \sim 10^{-3})$ rejected using particle ID
- $\circ~{\rm Using}~D^+ \to D^0 \pi^+$ decay chain
- $\circ~{\rm Fit}~m(e\mu\pi)-m(e\mu)$ and $m(e\mu)$ in bins of BDT
- No signal is observed and the following limits are set

 $\mathcal{B}(D^0 \to e^{\pm} \mu^{\mp}) < 1.3(1.6) \times 10^{-8} @ 90(95)\% \text{ C.L.}$


Order of magnitude lower than previous limit [Belle, PRD 81 (2010) 091102]

Search for $\tau^+ \rightarrow \mu^+ \mu^- \mu^+$

- Full Run1 search, uses classication in 3 dimensions
 - Invariant mass
 - $\circ M_{3body}$, to reject multibody decays and combinatorial (vertex quality, flight distance...)
 - *M*_{PID}, to reject misID background (PID likelihoods)
- Normalising to $D_s^+ \rightarrow \phi(\mu^+\mu^-)\pi^+$

LHCb, JHEP 02 (2015) 121

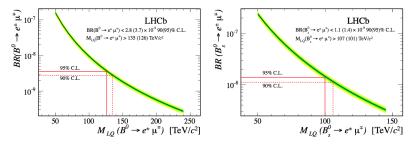
Limit set at (90% CL)

$$\mathcal{B}\tau^- \to \mu^- \mu^+ \mu^- < 4.6 \times 10^{-8}$$

Compatible with best limit from Belle [Belle, PLB 687 (2010) 139]

Summary

- LFV and LFU are perfect laboratories to search for physics beyond the SM
- Hints of lepton non-universality in $B^+ \to K^+ l^+ l^- ...$
 - $\circ~$ Compatible with the SM at 2.6 $\sigma~$ level
 - $\circ~$ Coherent with additional anomalies observed in $b \rightarrow s l^+ l^-$ transitions
- ... and in $B^0 \to D^{*+} l^- \nu$ have been measured at LHCb
 - Compatible with the SM at 2.1σ level (3.9σ combination)
 - First measurement of an $R(X_c)$ ratio at a hadron collider
- No signs of LFV in B, D or τ decays have been observed
- Updates of many of these measuremens and LFV and LFU tests of related modes foreseen at LHCb



Backup

$B^0_{(s)} ightarrow e^{\pm} \mu^{\mp}$ in Pati-Salam model

UL on branching fractions set lower bounds to the Pati-Salam lepto-quark mass. (theoretical formula here: Phys. Rev. D 50 (1994) 6843)

CDF measurements:

$$\begin{split} m_{LQ}(B_s \to e^+\mu^-) \, > \, & 47.8(44.9) \ \text{TeV}/c^2 \ @ \ 90(95)\%\text{CL}, \\ m_{LQ}(B_d \to e^+\mu^-) \, > \, & 59.3(56.3) \ \text{TeV}/c^2 \ @ \ 90(95)\%\text{CL} \end{split}$$

LHCb new constraints:

$$\begin{split} m_{LQ}(B_s \to e^+\mu^-) \, > \, 107(101) \; TeV/c^2 \, @ \; 90(95)\% \text{CL}, \\ m_{LQ}(B_d \to e^+\mu^-) \, > \, 135(126) \; TeV/c^2 \, @ \; 90(95)\% \text{CL} \end{split}$$

