Timing and Spectral studies of the transient X-ray binary pulsar KS 1947+300

Prahlad Epili

Collaborators

Sachindra Naik Gaurava K. Jaisawal

Physical Research Laboratory Ahmedabad

Be/X-ray Binary Pulsars

Be star + X-ray Pulsar

- Neutron Star is in a wide and eccentric $(0.1 \le e < 0.3)$ orbit in these systems.
- X-ray outbursts : due to interaction of NS with the circumstellar disk of Be star.
- Outbursts : Type-I and II

KS 1947+300 A Neutron Star Be/X-ray Binary

Swift/BAT light curve (Krimm et. al. 2013) of KS 1947+300

KS 1947+300 A Neutron Star Be/X-ray Binary

Swift/BAT light curve (Krimm et. al. 2013) of KS 1947+300 with a zoomed view of 2013 outburst, marked with the *Suzaku* observations.

Timing Properties (Pulse Profiles)

Energy resolved pulse profiles of KS 1947+300 from Observation-1

Phase-averaged Spectroscopy

Pulse Phase-resolved Spectroscopy

spectral parameter variations with pulse phases

Soft X-ray excess emission in KS 1947+300

□ Presence of excess emission in soft X-rays - pulsating with phase.

Soft X-ray excess detected in both the Suzaku observations.

Observation	Blackbody Flux (10 ⁻⁹ ergs cm ⁻² s ⁻¹)	Blackbody (kT) (keV)	Size of Emission region (km)
Obs. I	0.88±0.13	0.54 ± 0.02	~31 km
Obs. II	1.34±0.19	0.63 ± 0.03	~28 km

Size of soft X-ray excess emission region, indicates regions close to accretion column as most probable origin site of soft X-ray excess in KS 1947+300.

Magnetic field estimation from the pulsar spin-up

$$\dot{\omega}_{su} \cong 10^{-9} [Hz \, d^{-1}] \Pi_{su} \, \mu_{30}^{1/11} \, v_8^{-4} \, \left(\frac{P_b}{10 \, d}\right)^{-1} \dot{M}_{16}^{7/11}$$

(Shakura et. al. 2012, Postnov et. al. 2015)

 $\dot{\omega}_{su}$: spin-up (angular frequency rate) 1.27 × 10⁻⁵ [Hz/d] (present case)

 Π_{su} : ~4.6 Dimensionless parameter, system independent

 $P_b = 40.42 \ days$, (Galloway et. al. 2004)

 $\dot{M}_{16} = \frac{M}{10^{16}} \left[\frac{g}{s} \right] = 100, \text{ for the luminosity of } \sim 10^{38} \text{ erg s}^{-1}$ $v_8 = \frac{v}{10^8} \text{ cm s}^{-1} \sim 0.2 \text{ (i.e. 200 km/s) stellar wind velocity for typical BeXRB (Waters et. al. 1988)}$

 $\mu_{30} = \frac{\mu}{10^{30}} [G \, cm^3] \approx 0.6 \quad \text{NS dipole magnetic moment} (\text{estimated from spin-up rate})$

$$B = \frac{2\mu}{R_{\rm NS}^3} = 1.2 \times 10^{12} \, G$$

From cyclotron line measurements, $B \sim 1.1 \times 10^{12} (1+z)G$

(Fürst et. al. 2014)

- ✓ Smooth and single peaked soft X-ray pulse profiles. Appearance of dip like structures in hard X-ray pulse profiles.
- ✓ 1-100 keV Broadband spectra well described by a partially absorbed NPEX continuum model along with a blackbody component.
- ✓ Marginal enhancement in additional column density at dip phases discards the origin of dips due to absorption of hard X-rays by additional matter.
- ✓ Geometrical effect : probable cause of dips in hard X-ray pulse profiles.
- ✓ Pulsation in soft X-ray excess flux confirmed the nearby accretion column origin.
- ✓ Presence of soft X-ray excess may be cause of absence of dips in soft X-ray pulse profiles.
- ✓ Estimated magnetic field from the pulsar spin-up rate is comparable to that from cyclotron line energy.

Thanks ...

Possible soft excess emission processes in XRBs

X-ray Pulsars

□Highly Magnetized neutron stars in binary systems, accreting matter from a companion star.

□Stellar wind accretion In case of high-mass ($\geq 8 M_{sun}$) companion □Roche-lobe overflow

In case of low-mass $(\leq 3 M_{sun})$ companion