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THE NON-PERTURBATIVE NATURE OF QCD

m The Standard Model provides an Effective description of all the
forces known in nature except the gravitational force.

m Of these, only QCD (described by SU(3).) is non-perturbative in
nature.
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m Currently, the only way to obtain the observed spectrum from
the QCD Lagrangian is through numerical simulations.



LaTTicCE QCD

m Path-integral approach to QCD formulated on a discrete lattice
in Euclidean spacetime.

Zqcp = /D [T, 0, U] e 5r—56,

m Instead of gauge fields A}, (), one has SU(3). group elements
Uu(x,x + f1) that are defined on the links connecting adjacent
sites.

» Path-integral phase factor replaced by a Boltzmann factor e ™.

If S is real and positive-definite, then a probabilistic
interpretation is possible, allowing for a Monte Carlo calculation
of the path-integral.

m Number of degrees of freedom: For a 32 x 32 x 32 x 8 lattice:
323 x 8 x 3 colors x 4 spins ~ 10%(!) Use Monte Carlo to evaluate
the path integral.



QUARK-GLUON PLASMA AND CHIRAL SYMMETRY
RESTORATION

m The quark-gluon plasma is a new phase of a strongly-interacting
matter that exists at extremely high temperatures.

m In this phase, nuclear matter is deconfined and chirally
symmetric.

m The nature of the transition has been established as a crossover
for physical quark masses [Y. Aoki et al. (2006)].

m Recently the crossover temperature too has been determined to
be Teross =~ 156.5(1.5) MeV [HotQCD collaboration (2019)].



THE CHIRAL PHASE TRANSITION
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m The two-flavor chiral transition is 2°¢ order belonging to the
3d-O(4) universality class in the limit m; — 0.

m The transition temperature for this transition too has been
determined recently, to be T, = 132tg MeV. [HotQCD
collaboration (2019)].



SCREENING CORRELATORS

m Screening correlators carry important information about the degrees of
freedom of QCD at finite temperature, especially in the quark-gluon
plasma phase [R. Gavai et al. (1987), C. DeTar (1987), R. Gavai,

S. Gupta & P. Majumdar (2001)].

m The meson screening correlators are defined by
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where Mr = ¥(I' ® t*)1) is a meson operator and 3 is the inverse
temperature.

m The large-distance fall-off of these correlators is controlled by the
respective screening masses viz.

Gr(z) ~ exp(—mr(T) z), z — 0.



MESON CORRELATORS AND SYMMETRY
RESTORATION
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m The restoration of various symmetries manifests itself as a degeneracy
among various correlation functions.

m In the case of 2 + 1-flavor QCD, it suffices to study two-point
functions, i.e., meson screening functions.

m Chiral symmetry restoration identifies the vector and axial vector
isotriplet correlators while U4 (1) restoration identifies the scalar and
pseudoscalar isotriplet correlators.



SETUP OF THE CALCULATION

m We calculated meson screening masses in 2+1-flavor QCD for
temperatures 140 MeV < T < 1 GeV.

m Our lattices were generated using the 2+1-flavor Highly Improved
Staggered Quark action (HISQ).

m Our strange quark was tuned to its physical value, while the light
quark mass was set to one of two values: m; = ms/20 (nearly physical,
high temperatures) and m; = ms/27 (physical, low temperatures).

m We calculated the screening masses for N, = 6, 8, 10 (only for
my = m,/20), 12 and 16 (only for m; = m,/27). This allowed us to
take the continuum limit.



STAGGERED FERMIONS

m Not easy to put fermions on the lattice: The well-known “fermion
doubling” problem [L. Karsten & J. Smit (1978), H. Nielsen &
M. Ninomiya (1981)].

m Staggered fermions: Reduce the number of doubler flavors from
16 to 4 by spin-diagonalising the Dirac operator:

B(n) = AP (), SIS = (—1)m e

m One-component Dirac spinors, hence inexpensive to simulate.
However non-trival relation to continuum Dirac action.



STAGGERED MESON OPERATORS

m A staggered meson operator is given by
M(x) =Y ¢(@)x(2)x(z + n),

where ¢(z) is an z-dependent phase factor and n points to one or more
vertices of the unit hypercube based at x.

m If n = 0, the operator is said to be a local operator.

m The connection between these correlators and the continuum meson
correlators is complicated, but is known from group theory
[M. Goltermaan (1986), S. Gupta (1999)].



STAGGERED MESON OPERATORS

m Each staggered meson comes in sixteen flavors, known as tastes. These
tastes are degenerate in the continuum. At finite lattice spacing
however, this degeneracy is broken at O(a”).

m A staggered correlator couples to two mesons of opposite parities:

G(ns) = Z AZ(*) cosh (amf) (ng — %))
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m For example, the vector correlator that we study here couples to both
the vector as well as to one of the tastes of the axial-vector mesons.



SPECTRUM AT T =0
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m No determination of the flavored scalar meson (ao(980)).

m This is because the staggered scalar decays to two pions [S. Prelovsek
(2005)].

m Unphysical contribution from the various taste sectors cancels out in
the continuum; more on this later.



TASTE-SPLITTING IN
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THE PION SECTOR
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Our results may be compared to earlier results on taste-splittings for the

HISQ action [HotQCD collaboration, Lattice 2010].



LisT oF MESON OPERATORS
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In this study, we used only local operators, and we studied the
screening masses for spin-0 and spin-1 mesons of both parities.



FiTTING THE CORRELATORS

Multi-state fits tend to be highly unstable. The number of fit parameters
grows and the # degrees of freedom decreases quickly.

m One-state fits in a narrow fit window [N, /2 — 7, N; /2 4+ 7]: n.d.f.
much reduced. Also, we found that this was not sufficient for all cases.

m Corner wall sources were found to work best for the vector and axial
vector correlators below T' ~ 300 MeV. Comparable results to point
wall sources in other cases.

m Effective mass estimators [S. Mukherjee et al. (2014)] Split the
correlator into oscillating and non-oscillating parts and solve
analytically for the effective mass. Only works for one-state fits.

m Bayesian fits [Lepage (2001)] Need prior information (screening masses
and amplitudes), which we did not have.



AKAIKE INFORMATION CRITERION
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m Akaike Information Criterion [H. Akaike 1971, 1974] Provides a
criterion for measuring the goodness-of-fit of a given model to the
data. We actually used a corrected version of AIC (AICc), which is
used when the sample size is small.



AKAIKE INFORMATION CRITERION
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(Left) One-state fits, no AICc. (Right) AICc-chosen fits.

Multi-state fits for multiple fit windows; allow AICc to pick the best fit for
each window.



PoINT VERSUS CORNER WALL SOURCES
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m Select effective mass plateaus by hand.
m We found that point and corner wall fits performed comparably.

m We used corner wall sources for vector and axial vector correlators
below T' ~ 300 MeV, and point sources in all other cases.



SCREENING MASSES: 140 MEV < T < 300 MEV
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m The screening masses tend to the mass of the respective 7' = 0 mesons
as the temperature is decreased.

m However, this is not true for the case of the scalar screening mass.



THE STAGGERED SCALAR CORRELATOR

m The scalar mass tends to 2m, rather than mq,, at low temperatures.

m As already noted, this is because the staggered ap can undergo the
unphysical decay ag — 7.

m The decay arises from contributions of various tastes beyond tree level
to the staggered correlator [S. Prelovsek (2006), S. Prelovsek et al.
(2004)].

m These contributions cancel out in the continuum limit. In our case
however, we calculate the screening mass first and then take the
continuum limit.

m Beyond the question of screening masses, this also poses questions
regarding Ua (1) restoration.



CONTINUUM-EXTRAPOLATED RESULTS
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CONTINUUM-EXTRAPOLATED RESULTS
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THE QUESTION OF Ug(l) SYMMETRY RESTORATION

m Not known whether Ua (1) symmetry is also restored at the chiral
phase transition [E. Shuryak (1994), M. Birse, T. Cohen and
J. McGovern (1996), S. Lee and T. Hatsuda (1996), N. Evans, S. Hsu
and M. Schwetz (1996), S. Aoki et al. (2012)].

m Lattice studies can provide information by looking for a degeneracy
between the 7 and ao (8) correlators [HotQCD Collaboration (2012),
M. Buchoff et al. (2013), G.Cossu et al. (2012, 2013, 2017), R. Gavali,
S. Gupta and R. Lacaze (2001), T.-W. Chiu et al. (2013)].

m Easier to determine the degeneracy between the corresponding
susceptibilities viz.

No—1 No—1
Xr= Y M2ns),  xs=-— Y (=1)""Mil(n,).
ng=0 ng=0

(The oscillating phase factor is only needed in the staggered case).



Ua(l) SYMMETRY RESTORATION ON
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Taking the continuum limit of the susceptibilities is equivalent to
taking the continuum limit of the correlators.

We find that m?2(x» — xs) goes to zero very slowly and not at the
chiral crossover temperature itself.

Note however that the question of U4 (1) restoration only makes sense
in the chiral limit. A systematic chiral extrapolation needs to be
carried out before the question can really be addressed.



SCREENING MASSES: 300 MEV < T < 1000 MEV

m Quark-gluon plasma known to be non-perturbative just above the
chiral phase transition. It is not known at what temperature the
system becomes perturbative[E. Laermann & F. Pucci (2012),

S. Gupta & N. Karthik (2013), C. Rohrhofer et al. (2019)].

m We compare our results to the predictions of dimensionally reduced
QCD [M. Laine and M. Vepsalainen (2003), M. Laine and
Y. Schroeder (2005)].

m We find a difference between our results and EQCD predictions out to
T ~ 1 GeV. In any case, the spin-0 and spin-1 masses are very
different, whereas all masses receive the same corrections in
perturbation theory.



CONCLUSIONS

m We calculated meson screening masses in 2 + 1-flavor QCD for
temperatures 140 MeV < T < 1 GeV.

m We were able to take the continuum limit owing to having results for
multiple lattice spacings.

m We compared these results to predictions from resummed perturbation
theory at high temperatures. We found that the system remained
non-perturbative up to temperatures T' ~ 1 GeV.

m The low-temperature limit of the vector, axial vector and pseudoscalar
screening masses was as expected. The scalar mass had the wrong
T — 0 limit due to staggered artifacts. These artifacts disappear when
the continuum limit of the correlator is taken first. We calculated the
continuum limit of x» — x5 and found that the difference goes to zero
well above the chiral crossover temperature.



