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The Non-Perturbative Nature of QCD

The Standard Model provides an Effective description of all the
forces known in nature except the gravitational force.

Of these, only QCD (described by SU(3)c) is non-perturbative in
nature.

LQCD =

Nf∑
f=1

ψ̄f (x)
(
i /D −mf

)
ψf (x)− 1

4

(
F aµν

)2
.

Currently, the only way to obtain the observed spectrum from
the QCD Lagrangian is through numerical simulations.



Lattice QCD

Path-integral approach to QCD formulated on a discrete lattice
in Euclidean spacetime.

ZQCD =

∫
D
[
Ψ, Ψ̄, U

]
e−SF−SG .

Instead of gauge fields Aaµ(x), one has SU(3)c group elements
Uµ(x, x+ µ̂) that are defined on the links connecting adjacent
sites.

Path-integral phase factor replaced by a Boltzmann factor e−S .
If S is real and positive-definite, then a probabilistic
interpretation is possible, allowing for a Monte Carlo calculation
of the path-integral.

Number of degrees of freedom: For a 32× 32× 32× 8 lattice:
323 × 8× 3 colors× 4 spins ≈ 108(!) Use Monte Carlo to evaluate
the path integral.



Quark-Gluon Plasma and Chiral Symmetry
Restoration

The quark-gluon plasma is a new phase of a strongly-interacting
matter that exists at extremely high temperatures.

In this phase, nuclear matter is deconfined and chirally
symmetric.

The nature of the transition has been established as a crossover
for physical quark masses [Y. Aoki et al. (2006)].

Recently the crossover temperature too has been determined to
be Tcross ' 156.5(1.5) MeV [HotQCD collaboration (2019)].



The Chiral Phase Transition
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The two-flavor chiral transition is 2nd order belonging to the
3d-O(4) universality class in the limit ml → 0.

The transition temperature for this transition too has been
determined recently, to be Tc = 132+3

−6 MeV. [HotQCD

collaboration (2019)].



Screening Correlators

Screening correlators carry important information about the degrees of
freedom of QCD at finite temperature, especially in the quark-gluon
plasma phase [R. Gavai et al. (1987), C. DeTar (1987), R. Gavai,
S. Gupta & P. Majumdar (2001)].

The meson screening correlators are defined by

GΓ(z) =

∫ β

0

dτ

∫
dxdy

〈
MΓ(x, y, z, τ)MΓ(0, 0, 0, 0)

〉
,

where MΓ ≡ ψ̄(Γ⊗ ta)ψ is a meson operator and β is the inverse
temperature.

The large-distance fall-off of these correlators is controlled by the
respective screening masses viz.

GΓ(z) ∼ exp(−mΓ(T ) z), z →∞.



Meson Correlators and Symmetry
Restoration
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The restoration of various symmetries manifests itself as a degeneracy
among various correlation functions.

In the case of 2 + 1-flavor QCD, it suffices to study two-point
functions, i.e., meson screening functions.

Chiral symmetry restoration identifies the vector and axial vector
isotriplet correlators while UA(1) restoration identifies the scalar and
pseudoscalar isotriplet correlators.



Setup of the Calculation

We calculated meson screening masses in 2+1-flavor QCD for
temperatures 140 MeV . T . 1 GeV.

Our lattices were generated using the 2+1-flavor Highly Improved
Staggered Quark action (HISQ).

Our strange quark was tuned to its physical value, while the light
quark mass was set to one of two values: ml = ms/20 (nearly physical,
high temperatures) and ml = ms/27 (physical, low temperatures).

We calculated the screening masses for Nτ = 6, 8, 10 (only for
ml = ms/20), 12 and 16 (only for ml = ms/27). This allowed us to
take the continuum limit.



Staggered Fermions

Not easy to put fermions on the lattice: The well-known “fermion
doubling” problem [L. Karsten & J. Smit (1978), H. Nielsen &

M. Ninomiya (1981)].

Staggered fermions: Reduce the number of doubler flavors from
16 to 4 by spin-diagonalising the Dirac operator:

ψ(n)→ γn1
1 γn2

2 γn3
3 γn4

4 ψ(n), S−1γµS → (−1)n1+···+nµ−1 .

One-component Dirac spinors, hence inexpensive to simulate.
However non-trival relation to continuum Dirac action.



Staggered Meson Operators

A staggered meson operator is given by

M(x) =
∑
n

φ(x)χ̄(x)χ(x+ n),

where φ(x) is an x-dependent phase factor and n points to one or more
vertices of the unit hypercube based at x.

If n = 0, the operator is said to be a local operator.

The connection between these correlators and the continuum meson
correlators is complicated, but is known from group theory
[M. Goltermaan (1986), S. Gupta (1999)].



Staggered Meson Operators

Each staggered meson comes in sixteen flavors, known as tastes. These
tastes are degenerate in the continuum. At finite lattice spacing
however, this degeneracy is broken at O(a2).

A staggered correlator couples to two mesons of opposite parities:

G(nσ) =
∑

i=0,1,2,...

A
(−)
i cosh

(
am

(−)
i

(
nσ −

Nσ
2

))

− (−1)nσ
∑

j=0,1,2,...

A
(+)
j cosh

(
am

(+)
j

(
nσ −

Nσ
2

))
.

For example, the vector correlator that we study here couples to both
the vector as well as to one of the tastes of the axial-vector mesons.



Spectrum at T = 0
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No determination of the flavored scalar meson (a0(980)).

This is because the staggered scalar decays to two pions [S. Prelovsek
(2005)].

Unphysical contribution from the various taste sectors cancels out in
the continuum; more on this later.



Taste-Splitting in the Pion Sector
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Our results may be compared to earlier results on taste-splittings for the

HISQ action [HotQCD collaboration, Lattice 2010].



List of Meson Operators

φ(x) Γ JPC

NO O NO O
M1 (−1)x+y+τ γ3γ5 11 0−+ 0++

M2 1 γ5 γ3 0−+ 0+−

M3 (−1)y+τ γ1γ3 γ1γ5 1−− 1++

M4 (−1)x+τ γ2γ3 γ2γ5 1−− 1++

M5 (−1)x+y γ4γ3 γ4γ5 1−− 1++

M6 (−1)x γ1 γ2γ4 1−− 1+−

M7 (−1)y γ2 γ1γ4 1−− 1+−

M8 (−1)τ γ4 γ1γ2 1−− 1+−

In this study, we used only local operators, and we studied the
screening masses for spin-0 and spin-1 mesons of both parities.



Fitting the Correlators

Multi-state fits tend to be highly unstable. The number of fit parameters
grows and the # degrees of freedom decreases quickly.

One-state fits in a narrow fit window [Nσ/2− τ,Nσ/2 + τ ]: n.d.f.
much reduced. Also, we found that this was not sufficient for all cases.

Corner wall sources were found to work best for the vector and axial
vector correlators below T ∼ 300 MeV. Comparable results to point
wall sources in other cases.

Effective mass estimators [S. Mukherjee et al. (2014)] Split the
correlator into oscillating and non-oscillating parts and solve
analytically for the effective mass. Only works for one-state fits.

Bayesian fits [Lepage (2001)] Need prior information (screening masses
and amplitudes), which we did not have.



Akaike Information Criterion
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Akaike Information Criterion [H. Akaike 1971, 1974] Provides a
criterion for measuring the goodness-of-fit of a given model to the
data. We actually used a corrected version of AIC (AICc), which is
used when the sample size is small.



Akaike Information Criterion
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(Left) One-state fits, no AICc. (Right) AICc-chosen fits.

Multi-state fits for multiple fit windows; allow AICc to pick the best fit for

each window.



Point versus Corner Wall sources
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We found that point and corner wall fits performed comparably.

We used corner wall sources for vector and axial vector correlators
below T ∼ 300 MeV, and point sources in all other cases.



Screening Masses: 140 MeV . T . 300 MeV
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The screening masses tend to the mass of the respective T = 0 mesons
as the temperature is decreased.

However, this is not true for the case of the scalar screening mass.



The staggered scalar correlator

The scalar mass tends to 2mπ, rather than ma0 , at low temperatures.

As already noted, this is because the staggered a0 can undergo the
unphysical decay a0 → ππ.

The decay arises from contributions of various tastes beyond tree level
to the staggered correlator [S. Prelovsek (2006), S. Prelovsek et al.
(2004)].

These contributions cancel out in the continuum limit. In our case
however, we calculate the screening mass first and then take the
continuum limit.

Beyond the question of screening masses, this also poses questions
regarding UA(1) restoration.



Continuum-Extrapolated Results
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Continuum-Extrapolated Results
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The question of UA(1) Symmetry Restoration

Not known whether UA(1) symmetry is also restored at the chiral
phase transition [E. Shuryak (1994), M. Birse, T. Cohen and
J. McGovern (1996), S. Lee and T. Hatsuda (1996), N. Evans, S. Hsu
and M. Schwetz (1996), S. Aoki et al. (2012)].

Lattice studies can provide information by looking for a degeneracy
between the π and a0 (δ) correlators [HotQCD Collaboration (2012),
M. Buchoff et al. (2013), G.Cossu et al. (2012, 2013, 2017), R. Gavai,
S. Gupta and R. Lacaze (2001), T.-W. Chiu et al. (2013)].

Easier to determine the degeneracy between the corresponding
susceptibilities viz.

χπ =

Nσ−1∑
nσ=0

M2(nσ), χδ = −
Nσ−1∑
nσ=0

(−1)nσM1(nσ).

(The oscillating phase factor is only needed in the staggered case).



UA(1) Symmetry Restoration on the Lattice
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Taking the continuum limit of the susceptibilities is equivalent to
taking the continuum limit of the correlators.

We find that m2
s(χπ − χδ) goes to zero very slowly and not at the

chiral crossover temperature itself.

Note however that the question of UA(1) restoration only makes sense
in the chiral limit. A systematic chiral extrapolation needs to be
carried out before the question can really be addressed.



Screening Masses: 300 MeV . T . 1000 MeV
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Quark-gluon plasma known to be non-perturbative just above the
chiral phase transition. It is not known at what temperature the
system becomes perturbative[E. Laermann & F. Pucci (2012),
S. Gupta & N. Karthik (2013), C. Rohrhofer et al. (2019)].

We compare our results to the predictions of dimensionally reduced
QCD [M. Laine and M. Vepsalainen (2003), M. Laine and
Y. Schroeder (2005)].

We find a difference between our results and EQCD predictions out to
T ∼ 1 GeV. In any case, the spin-0 and spin-1 masses are very
different, whereas all masses receive the same corrections in
perturbation theory.



Conclusions

We calculated meson screening masses in 2 + 1-flavor QCD for
temperatures 140 MeV . T . 1 GeV.

We were able to take the continuum limit owing to having results for
multiple lattice spacings.

We compared these results to predictions from resummed perturbation
theory at high temperatures. We found that the system remained
non-perturbative up to temperatures T ∼ 1 GeV.

The low-temperature limit of the vector, axial vector and pseudoscalar
screening masses was as expected. The scalar mass had the wrong
T → 0 limit due to staggered artifacts. These artifacts disappear when
the continuum limit of the correlator is taken first. We calculated the
continuum limit of χπ − χδ and found that the difference goes to zero
well above the chiral crossover temperature.


