FCNC Decays of the Top Quark

Debjyoti Bardhan

Dept. of Theoretical Physics, Tata Institute of Fundamental Research,

With: Gautam Bhattacharyya, Diptimoy Ghosh, Monalisa Patra, Sreerup Raychaudhuri

Based on Phys.Rev. D94 (2016) no.1, 015026

CKM2016, TIFR 1st December, 2016

Motivation

- New Physics could be anywhere
- Could discover particles
 - ▶ Resonant production: $p + p \rightarrow P \rightarrow X + Y$
 - ➢ Pair production: $p + p → P + \overline{P} → X + Y + \overline{X} + \overline{Y}$
 - > Associated production: $p + p \rightarrow P + Z$
 - Fine print Mass of new particle $\sim 2 2.5 \text{ TeV}$
- Look at loop effects for contribution of new particles
 - Fine print Small effect; can only be seen if SM contribution is small

Thus, Top FCNC Decays...

- Obvious candidate: FCNC processes and GIM suppression
- **Top Decay:** Dominant decay mode: $t \rightarrow b W$ (almost 100% BR)
- Flavour Changing Neutral Current (FCNC) decays rare decays like $t \rightarrow c h$
- **Bonus:** No hadronisation!
 - Large top mass
 - No non-perturbative processes like parton showering

• **Caveat:** Won't be considering any flavour changing couplings for Higgs

MFV structure of the Quark sector

- **MFV hypothesis:** Yukawas are the only source of flavour violation in the SM and in any BSM models R.S. Chivukula, H. Georgi, Phys. Lett. B 188, 99 (1987)
- Yukawas might have a high energy dynamical origin

Implications:

- SM flavour structure is all that there is
- Produces additional suppression for NP flavour transitions
- Inherits the hierarchical nature of the CKM matrix

$$CKM \approx \begin{pmatrix} 1 & \lambda & A\lambda^3 \\ -\lambda & 1 & A\lambda^2 \\ A\lambda^3 & -A\lambda^2 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0.2 & 0.003 \\ 0.2 & 1 & 0.04 \\ 0.008 & 0.04 & 1 \end{pmatrix}$$

Top FCNC Decays in the SM

$$\Gamma \approx \left| g^2 \mathcal{A}'(0, M_W) V_{qb}^* x_b \right|^2 \approx m_t g^4 \left(\frac{1}{16\pi^2} \right)^2 \left| V_{qb} \right|^2 x_b^2 \qquad \text{GIM: } 2 \times 10^{-6}$$
Coupling: 0.19
Loop: 4×10^{-5}
CKM: 1.6×10^{-3}

GIM Relaxation:Enhancement of
$$\sim \left[\left(\frac{m_b}{M_\omega} \right)^4 \right]^{-1} \approx 10^6$$
Non-MFV:Enhancement of $\approx 10^4$ Large Couplings:Enhancement of $\approx 10^2$

Calculating Top FCNC Decay

 $t(p) \rightarrow c(p+k) + h(-k)$

Scalar : $iM = \overline{c}(p+k) i\Gamma t(p)$

- Calculated the process t → c h with generic couplings in the Feynman gauge.
 Form factors have been used:
- Contribution to effective vertex of the nth diagram is:

$$i \Gamma_n = \frac{ig^3}{16\pi^2} \sum_{i=1}^3 \lambda_i \left(F_{1i}^{(n)} P_L + F_{2i}^{(n)} P_R \right)$$

$$\Gamma = \sum_{n} \Gamma_{n}$$

• GIM suppression comes from the factor:

$$\lambda_i = V_{ci}V_{ti}^*$$

Toy Model

• Introduce a charged scalar – a scalar version of the *W*-boson

Toy Model

- Used helicity amplitude techniques to calculate the Branching Ratios
- Amplitudes for each helicity combination of top, charm: $A_i(h_c, h_t)$
- Only two combinations non-zero: $A_i(+, +); A_i(-, -)$

"SM Like" amplitudes

$$\mathcal{A} = \sum_{i} \lambda_{i} A (m_{i}, X) \qquad \qquad \lambda_{i} = V_{ti}^{*} V_{ci}$$

Toy Model Amplitudes for $t \rightarrow ch$

Feynman Diagrams in the SM

Result (in the SM)

$$BR(t \to ch) \sim 10^{-15}$$

In the SM

LHC Reach

• CMS Collaboration places a 95% CL using Run-I data

$$BR(t \rightarrow ch) < 4 \times 10^{-3} \qquad BR(t \rightarrow cZ) < 5.0 \times 10^{-4}$$

Talk by Sandeep Bhowmik

• Can reach the exclusion limit (2-sigma) of (at 3000 fb^{-1} of 13 TeV data):

$$BR_{3ab^{-1}}(t \to cZ) = 7.0 \times 10^{-5}$$
 $BR_{3ab^{-1}}(t \to ch) = 1.5 \times 10^{-4}$

• Optimistic limit : $BR_{3ab^{-1}}(t \rightarrow ch) \sim 10^{-5}$

Observed Top FCNC would definitely be New Physics

Introduction to cMSSM

- The simplest version of the MSSM
- cMSSM contains 5 free parameters m_0 , $m_{1/2}$, A_0 , $\tan\beta$, $sgn(\mu)$
- GIM would be broken by the charged Higgs
- MFV structure retained
- Couplings similar to those of the SM particles, scaled by factors like aneta

Parameter Space - Constraints

- Theory Constraints
 - Issues like vacuum stability, proper LSP etc.
- Higgs Mass constraint
 - light Higgs mass taken between 124 to 127 GeV (2 σ interval)
 - Constraints m_0 values \Rightarrow charged Higgs mass is large
- Direct mass constraints
 - Latest results by ATLAS
 - $m_{\tilde{g}} \ge 1.7 \ TeV$; $m_{\tilde{q}} \ge 1000 \ GeV$; $m_{\tilde{t}}(b\chi^+) > 380 \ GeV$
- Flavour Physics constraints
 - FCNC processes involving *b*-quark are also GIM-violating
 - $-B \rightarrow K^* \gamma$ and $B_s \rightarrow \mu^+ \mu^-$ are measured very close to SM
 - Although, we don't take the anomalies like R_D , R_{D^*} and $B \rightarrow D^* \tau \nu$

Need to be updated

LHCb: 1211.2674; Belle: 1208.4678

m_{1/2}[TeV

Parameter Space - Constraints

Black – ruled out by 'theory constraints':

- Shape of the EW potential
- LSP is DM candidate not coloured or charged

Blue – ruled out by mass constraints

- Higgs mass: $124 \le m_H \le 127$
- Direct searches bounds for sparticle masses

Red – ruled out by Flavour Physics constraints

- b-quark physics; FCNC processes
- $B \to K^* \gamma$ and $B \to \mu^+ \mu^-$ are almost SM-like

LHCb: 1211.2674; Belle: 1208.4678

SUSY Contributions

• Additional diagrams with (a) charged Higgs bosons (b) charginos (

Blue – Mass forbidden:

• Higgs and sparticle mass disallowed

Red – Flavour forbidden:

• Ruled out by flavour data

Black – Allowed points:

• Gives us a *tiny* branching ratio

 $BR \sim 4.5 \times 10^{-11}$

Reasons

- Higgs mass constraint = Heavy charged Higgs
- Within MFV paradigm: $\frac{m_t}{M_W} \cot \beta + \frac{m_b}{M_W} \tan \beta$

R-parity Violating SUSY

• R-parity is a \mathbb{Z}_2 symmetry which differentiates between SM and SUSY particles

 $R = (-1)^{2s+3B+L}$

• R-parity violating SUSY superpotential -

- No Unitary Requirements No GIM Cancellation
- No Specific 'CKM' structure **No MFV Structure**
- Size of couplings Can be Large

R-parity Violating SUSY

- RPV couplings needn't be small
- Update old limits and incorporate new squark/slepton masses

		Scales		Upper	Sfermion	Current
	Strongest Constraint	as mass	Scaling	bound	mass	upper
	arises from	of	Exponent	(100 GeV)	(GeV)	bound
λ'_{121}	CC Universality [67]	\tilde{q}_L	1	0.035	$1350 \ [52]$	0.385
λ'_{122}	ν_e mass bound [53]	$ ilde{d}_R$	$^{1}/_{2}$	0.004	1100 [25]	0.013
λ'_{123}	CC Universality [46]	\tilde{b}_1	$^{1}/_{2}$	0.02	620 [54]	0.05
λ'_{131}	Atomic parity violation [67]	${ ilde t}_L$	1	0.019	300 [55]	0.057
λ'_{132}	FB asymmetry (e^+e^-) [67] [45]	\tilde{t}_L	1	0.28	300 [55]	0.84
λ'_{133}	ν_e mass bound [53]	$ ilde{b}_1$	$^{1}/_{2}$	0.0002	620 [54]	0.0005
λ'_{221}	Bounds on $R_{\mu e}$ [56]	\widetilde{d}_R	1	0.18	1100 [25]	1.98
λ'_{222}	ν_{μ} mass bound [53]	$ ilde{d}_R$	$^{1}/_{2}$	0.015	1100 [25]	0.05
λ'_{223}	D_s meson decay [56]	$ ilde{b}_1$	1	0.18	620 [54]	1.1
λ'_{231}	ν_{μ} DIS [45, 46]	$\tilde{\nu}_{ au}$	1	0.22	1700 [57]	2.00
λ'_{232}	Bounds on $R_{\mu}(Z)$ [58, 59]	\tilde{s}	1	0.39	1000 [25]	2.00
		$ ilde{\mu}$	-1		$100 \ [25]$	
λ'_{2222}	$\nu_{\rm e}$ mass bound [53]	Ĩъ	1/2	0.001	1100[25]	0.003

LQD

R-parity Violating SUSY

		Scales		Upper	Sfermion	Current
	Strongest Constraint	as mass	Scaling	bound	mass	upper
	arises from	of	Exponent	(100 GeV)	(GeV)	bound
$\lambda_{212}^{\prime\prime}$						
$\lambda_{213}^{\prime\prime}$	Perturbativity [60]	_	_	1.24	_	➡ 1.24
$\lambda_{223}^{\prime\prime}$						
$\lambda_{312}^{\prime\prime}$	$n-\bar{n}$ oscillation $[61,62]$	$ ilde{d}_R$	2	10^{-3}	1100 [25]	0.1
$\lambda_{313}^{\prime\prime}$		${ ilde g}$	$^{1}/_{2}$		1000 [29]	0.1
$\lambda_{323}^{\prime\prime}$	Bounds on $R_b(Z)$ [63]	\widetilde{b}	1	1.89	500 [54]	→ 1.89
		$ ilde{ au}$	-1	1.89	80 [25]	

UDD

• Only some of the couplings are small – a few can be quite large

RPV SUSY Contributions

RPV SUSY Results - $t \rightarrow c H$

- Top decay to Higgs and charm would still be inaccessible in RPV-SUSY at the LHC
- Detection could indicate tree-level FCNC in Higgs couplings

RPV SUSY Results - $t \rightarrow c Z$

- Range of parameters for which top to charm and Z-boson would be visible
- Detection would be signal for RPV-SUSY but not uniquely

Conclusion and Summary

> Top FCNC's as a probe of New Physics, especially one that is heavy

SM branching ratio is way too small – sources of suppression

Situation doesn't improve in cMSSM

Might be observable in RPV-SUSY scenarios the future

Conclusion and Summary

> Top FCNC's as a probe of New Physics, especially one that is heavy

SM branching ratio is way too small – sources of suppression

Situation doesn't improve in cMSSM

Thank You!

Might be observable in RPV-SUSY scenarios the future

BACKUP SLIDES

MFV structure of the Quark sector

• Total SM fermion flavour structure

$$G_f = SU(3)_q \otimes SU(3)_U \otimes SU(3)_D \quad \otimes SU(3)_l \otimes SU(3)_E$$

• Introduce spurions like Yukawa fields to break G_f^Q

$$Y_u \sim (3, \overline{3}, 1);$$
 $Y_d \sim (3, 1, \overline{3})$
 $\mathcal{L} = \overline{Q}Y_d D\phi + \overline{Q}Y_u U\tilde{\phi} + h.c.$ Invariant under G_f

- Source of Yukawa fields some high energy dynamics
- Dim-5 terms in EFT

Passarino Veltman Integrals

Algorithm provided by Passarino and Veltman

G.Passarino and M.J.G. Veltman, Nucl. Phys. B 160, 151 (1979)

$$B_0(m_1, m_2; M) = \int \frac{d^4k}{\pi^2} \frac{1}{(k^2 + m_1^2)((k+p)^2 + m_2^2)}$$

$$p_\mu B_1(m_1, m_2; M) = \int \frac{d^4k}{\pi^2} \frac{k_\mu}{(k^2 + m_1^2)((k+p)^2 + m_2^2)}$$

$$p^2 = -M^2$$

$$C_{0}(m_{1}, m_{2}, m_{3}; M_{1}, M_{2}, M_{3}) = \int \frac{d^{4}k}{\pi^{2}} \frac{1}{(k^{2} + m_{1}^{2})((k + p_{2})^{2} + m_{2}^{2})((k + p_{2} + p_{3})^{2} + m_{3}^{2})}$$

$$C_{11}p_{2\mu} + C_{12}p_{3\mu} = \int \frac{d^{4}k}{\pi^{2}} \frac{k_{\mu}}{(k^{2} + m_{1}^{2})((k + p_{2})^{2} + m_{2}^{2})((k + p_{2} + p_{3})^{2} + m_{3}^{2})}$$

$$p_{i}^{2} = -M_{i}^{2}$$

RPV Couplings

		Scales		Upper	Sfermion	Current
	Strongest Constraint	as mass	Scaling	bound	mass	upper
	arises from	of	Exponent	(100 GeV)	(GeV)	bound
λ'_{121}	CC Universality [67]	\tilde{q}_L	1	0.035	1350 [52]	0.385
λ'_{122}	ν_e mass bound [53]	\tilde{d}_R	¹ / ₂	0.004	1100 [25]	0.013
λ'_{123}	CC Universality [46]	\tilde{b}_1	¹ / ₂	0.02	620 [54]	0.05
λ'_{131}	Atomic parity violation [67]	$ ilde{t}_L$	1	0.019	300 [55]	0.057
λ'_{132}	FB asymmetry (e^+e^-) [67] [45]	$ ilde{t}_L$	1	0.28	300 [55]	0.84
λ'_{133}	ν_e mass bound [53]	\tilde{b}_1	$^{1}/_{2}$	0.0002	620 [54]	0.0005
λ'_{221}	Bounds on $R_{\mu e}$ [56]	\tilde{d}_R	1	0.18	1100 [25]	1.98
λ'_{222}	ν_{μ} mass bound [53]	\tilde{d}_R	$^{1}/_{2}$	0.015	1100 [25]	0.05
λ'_{223}	D_s meson decay [56]	\tilde{b}_1	1	0.18	620 [54]	1.1
λ'_{231}	ν_{μ} DIS [45, 46]	$\tilde{\nu}_{\tau}$	1	0.22	1700 [57]	2.00
λ'_{232}	Bounds on $R_{\mu}(Z)$ [58, 59]	\tilde{s}	1	0.39	1000 [25]	2.00
		$ ilde{\mu}$	-1		100 [25]	
λ'_{233}	ν_{μ} mass bound [53]	\tilde{d}_R	$^{1}/_{2}$	0.001	1100 [25]	0.003
λ'_{321}	D_s decays [45]	$ ilde{d}_R$	1	0.52	1100 [25]	0.66
λ'_{322}	ν_{τ} mass bound [53]	\tilde{d}_R	$^{1}/_{2}$	0.02	1100 [25]	0.07
λ'_{323}	D_s decay [45]	\tilde{b}_1	1	0.52	620 [54]	2.00
λ'_{331}	Bounds on $R_{\tau}(Z)$ [58]	\tilde{d}	1,	0.22	1000 [25]	2.00
λ'_{332}		$\tilde{\tau}$	-1	0.22	100 [25]	2.00
λ'_{333}	ν_{τ} mass bound [53]	\tilde{b}_1	1/2	0.001	620 [54]	0.003

$\lambda'_{121}\lambda'_{131}$	$\lambda'_{122}\lambda'_{132}$	$\lambda'_{123}\lambda'_{133}$	$\lambda'_{221}\lambda'_{231}$	$\lambda'_{222}\lambda'_{232}$	$\lambda'_{223}\lambda'_{233}$
0.0219	0.0109	$2.5 imes 10^{-5}$	3.96	0.1	0.0033
$\widetilde{e}_L, \widetilde{d}_R$	$\widetilde{e}_L,\widetilde{s}_R$	$\widetilde{e}_L, \widetilde{b}_R$	$\widetilde{\mu}_L,\widetilde{d}_R$	$\widetilde{\mu}_L,\widetilde{s}_R$	$\widetilde{\mu}_L, \widetilde{b}_R$
$\lambda'_{321}\lambda'_{331}$	$\lambda'_{322}\lambda'_{332}$	$\lambda'_{323}\lambda'_{333}$	$\lambda_{212}''\lambda_{312}''$	$\lambda_{213}''\lambda_{313}''$	$\lambda_{223}''\lambda_{323}''$
$\frac{\lambda'_{321}\lambda'_{331}}{1.32}$	$\frac{\lambda_{322}^\prime\lambda_{332}^\prime}{0.14}$	$\frac{\lambda'_{323}\lambda'_{333}}{0.006}$	$\lambda_{212}''\lambda_{312}''$ 0.124	$\lambda_{213}''\lambda_{313}''$ 0.124	$\lambda_{223}''\lambda_{323}''$ 2.3436