Model Comparisons with Accelerator and EAS data

Tanguy Pierog and Dieter Heck

Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany

CORSIKA School, Ooty, India December the 19th 2010

Outline

Hadronic Interaction Models in CORSIKA

- references
- CPU time
- Accelerator data
 - excitation functions
 - distributions
- EAS data
 - fluorescence light
 - particles at ground

Models in CORSIKA

High-energy models in CORSIKA (Elab > 80 GeV)

- DPMJET II.55
- ➡ EPOS 1.99
- 🔶 neXus 3.97
- QGSJET 01
- ➡ QGSJET II-3
- SIBYLL 2.1
- Low-energy models in CORSIKA
 - ➡ FLUKA 2008
 - GHEISHA 2002
 - → UrQMD 1.3

References for High Energy Models

DPMJET II.55

J. Ranft, Phys. Rev. D51 (1995) 64; hep-ph / 9911213; hep-ph / 9911232

EPOS 1.99

→ K. Werner et al., Phys. Rev. C74 (2006) 044902

→ T. Pierog et al., ICRC 2009 Proceedings

neXus 3

→ H.J. Drescher et al., Phys. Rep. 350 (2001) 93

→ T. Pierog et al., QM2002 Proceedings

QGSJET 01

➡ N.N. Kalmykov et al., Nucl. Phys. B (Proc. Suppl.) 52B (1997) 17

QGSJET II-3

- → S. Ostapchenko, Phys. Rev. D74 (2006) 014026
- → Nucl. Phys. B (Proc. Suppl.) 151 (2006) 143 & 147

SIBYLL 2.1

R. Engel et al., Proc. 26th ICRC (Salt Lake City) 1 (1999) 415

References for Low Energy Models

FLUKA

- → Fass`o A. et al., Report CERN-2005-10 (2005);
- Computing in High Energy and Nuclear Physics 2003 Conference (CHEP2003), (paper MOMT005);
- hep-ph / 0306267; http://www.fluka.org/

GHEISHA

- Fesefeldt H., PITHA-85/02 (RWTH, Aachen) (1985);
- correction patches: Cassell R.E. and Bower G., private comm. (2002)

UrQMD 1.3

- → Bass S.A. et al., Prog. Part. Nucl. Phys. 41 (1998) 225;
- → Bleicher M. et al., J. Phys. G: Nucl. Part. Phys. 25 (1999) 1859
- http://www.th.physik.uni-frankfurt.de/ ~urqmd/

CPU Time for Low Energy Models

	100 000	1 shower ¹	
	at 10	10^{19} eV	
model	p-air	π -air	$\varepsilon = 10^{-6}$
FLUKA	208	190	72 800
GHEISHA 2002	124	117	33 500
UrQMD 1.3c	(≈1 200)	(≈1 200)	(≈95 000)
QGSJET 01	101	100	

 $\label{eq:general} \begin{array}{l} ^1 \mbox{ QGSJET 01, vertical, } w_{\rm em} < 10^4, w_{\rm h} < 10^2, 1450 \mbox{ m a.s.l.,} \\ E_{\rm h} > 300 \mbox{ MeV, } E_{\mu} > 100 \mbox{ MeV, } E_{\rm em} > 250 \mbox{ keV} \end{array}$

CPU times (sec) for 1 GHz Pentium.

CPU Time for High Energy Models

	10 000 collisions		100 p-showers	
	at 1 PeV		1 PeV	100 PeV
model	p- ¹⁴ N	π - 14 N	only NKG ¹	with THIN ²
DPMJET II.55	312	367	$(2\ 170)^3$	$(87\ 051)^3$
EPOS 1.6	1 789	936	13 414 ⁴	280 000 ⁴
neXus 3.97	2 202	884	8 950 ⁴	413 950 ⁴
QGSJET 01	189	336	4 490 ⁴	40 540 ⁴
QGSJET II-3	1 283	1 1 2 2	5 784 ⁴	93 878 ⁴
SIBYLL 2.1	214	240	4 348 ⁴	43 200 ⁴

 $^1\,$ vertical, $E_{\rm h} > 300$ MeV, $E_{\mu} > 300$ MeV

 $^2~$ vertical, $E_{\rm h}>100$ MeV, $E_{\mu}>100$ MeV, $E_{\rm em}>0.1$ MeV, $\varepsilon=10^{-5}$

- ³ with low energy model GHEISHA 2002
- $^4\;$ with low energy model FLUKA

CPU times (sec) for 1 GHz Pentium.

Excitation function : Charged Pions

 π^{\pm} multiplicities in pp-collisions as function of energy.

T. Pierog, KIT - 8/56

Excitation function : Charged Kaons

 K^{\pm} multiplicities in pp-collisions as function of energy.

Excitation function : Anti-protons

nucleon multiplicities in pp-collisions as function of energy.

T. Pierog, KIT - 10/56

Excitation function : Charged

Charge particles multiplicities in pp-collisions as function of energy.

T. Pierog, KIT - 11/56

Pion <Pt>

Charged pions mean transvers momentum in pp-collisions as function of energy.

T. Pierog, KIT - 12/56

<Pt>

Charged pions mean transvers momentum in pp-collisions as function of energy.

T. Pierog, KIT - 13/56

Distributions

Pseudorapidity p-ap 900 GeV

Pseudorapidity ALICE Inel>0

Multiplicity Distribution 900 GeV

ALICE Multiplicity Distributions

T. Pierog, KIT - 18/56

CORSIKA School – December 2010

ATLAS Distributions

CMS Transverse Momentum Pt

LHCb 900 GeV

LHCb 7 TeV

proton-Carbon x distributions

pion-Carbon PI distributions

proton-Carbon distributions

CORSIKA School – December 2010

T. Pierog, KIT - 25/56

Summary for Single Interactions

EPOS 1.99

- \rightarrow not enough low-X pions at E > 10¹⁵ eV
- too large Pt for baryons at high energy

QGSJET 01

- too many low-X pions at low energy
- \rightarrow much high-mass diffraction at E > 10¹⁶ eV
- Iow elasticity in pion-induced interactions
- baryons a bit low at high energy

QGSJET II-3

- too many low-X mesons
- → high elasticity for p-N with $10^{12} < E < 10^{17} eV$
- not enough baryons at high energy

SIBYLL 2.1

- \rightarrow high elasticity and high cross section at E > 10¹⁷ eV
- very few baryons

Hadronic Model Predictions

T. Pierog, KIT - 27/56

Inelastic p-Air Cross Section

CORSIKA School – December 2010

T. Pierog, KIT - 28/56

<Xmax>

Large spread of model predictions !

Xmax Auger

EPOS and SIBYLL (almost)

consistent light mix to heavy mix <Xmax> and RMS

- QGSJETII
 - very light at low E, but inconsistent <Xmax> and RMS at high E

QGSJET01

inconsistent description of <Xmax> and RMS

Generalized Heitler Model

Using a simple generalized Heitler model to understand EAS characteristics :

- fixed interaction length
- equally shared energy
- 2 types of particles :
 - N_{had} continuing hadronic cascade until decay at E_{dec} producing muons (charged pions).
 - N_{em} transferring their energy to electromagnetic shower (neutral pions).
- J. Matthews, Astropart.Phys. 22 (2005) 387-397

- Model independent parameters :
 - E₀ = primary energy
 - $\mathbf{a}_{\mathbf{e}}$ = electromagnetic mean free path
- Model dependent parameters :
 - N_{tot} = total multiplicity
 - λ_{ine} = hadronic mean free path T. Pierog, KIT - 31/56

Energy Transfer : Energy Deposit

EAS data

T. Pierog, KIT - 33/56

Conversion Factor

Average value used

- Small error due to models (~1-2%)
- Main uncertainty from unknown mass (~5-2%)

From Heitler model

$$E_{em} = \left[1 - \left(\frac{N_{had}}{N_{tot}}\right)^{n(A)}\right] E_0$$

- Energy deposit depends on muon number
 - Primary mass dependent

Energy from FD

Energy from longitudinal development

- integration of energy deposit
- measure of calorimetric energy
- conversion factor to get primary energy

Change in composition

- conversion factor is mass dependent
- energy scale can be changed by ~5%

EAS data

Total Number of Muons

Discrepancy (baryon and pion spectra) between models Much more muons in EPOS

Muons in Data

Is the problem seen using QGSJETII-3 with muons general ?

Muon Density @ 1000 m

EPOS consistent with Auger data

intermediate mass needed both for <Xmax>, RMS Xmax and muons

QGSJETII underestimate the number of muons

Muon Density @ 1000 m

EPOS consistent with Auger data

- intermediate mass needed both for <Xmax>, RMS Xmax and muons
- QGSJETII underestimate the number of muons

Effect of Low Energy Model

Lateral distribution of the Cherenkov density ratios relative to QGSJET 01 + FLUKA.

Auger Event-by-Event E~10¹⁹ eV

Yakutsk E>10¹⁹ eV

Analysis on 33 events recontructed with the same geometry

T. Pierog, KIT - 41/56

HiRes-Mia

EPOS much closer to the data than QGSJET01

may be even not enough ?

KASCADE-Grande

- Muon density indicates a high number of muon
 - EPOS consistent with data
 - QGSJETII too low close to the core
- Shape of LDF for charged particles seems to indicate the same.

EAS data

KASCADE

Utilize correlations between Ne and Nmu to determine the mass spectra

- absolute normalization not very important (for this analysis)
 - degeneracy mass/model
- Iow number of muons can be compensated by low number of electrons
- high number of muons has to be compensated by high number of electrons
- cross check with correlation with hadrons

Different experiment in same energy range can provide complementary informations

Ne-Nmu QGSJET01

Ne-Nmu QGSJET01

T. Pierog, KIT - 46/56

Ne-Nmu QGSJETII

Ne-Nmu Sibyll

Ne-Nmu EPOS 1.99

- Reasonable description of data too but
 - too many muons
 - or not enough electrons (not deep enough showers

10

 10^{2}

 $dN/dE \cdot E^{2.5} \ [m^{-2}s^{-1}sr^{-1}GeV^{1.5}]$

Ne-Nmu

Different mass spectra

- Sibyll/QGSJETII : lot of Carbon and few protons
- QGSJET01 : more Helium and low Carbon
- EPOS : same proton and Helium flux, Carbon very low

QGSJet 01

energy E [GeV]

proton

helium

carbon

 10^{7}

10⁸ 10⁶

106

proton

helium

carbon

 10^{7}

Hadron Correlation (1)

EPOS 1.6 Problem

showers not deep enough (cross section and remnant break-up)

EPOS 1.99

OK (on-going full analysis)

Hadron Correlation (2)

EPOS 1.6 Problem

 showers not deep enough (cross section and remnant break-up)

• EPOS 1.99

OK (on-going full analysis)

CORSIKA School – December 2010

T. Pierog, KIT - 52/56

Models in CORSIKA

Accelerator data

EAS data

Hadron Correlation (3)

Jörg R. Hörandel, RU Nijmegen Jens Milke, IWR, FZK

•EPOS 1.6 is not compatible with KASCADE measurements → can not be recommended for air shower simulations

•QGSJET-II has some deficiencies
→ should be used for simulations with care

•QGSJET 01 and SIBYLL 2.1 still most compatible models

EPOS 1.99

- results should come soon
- preliminary tests OK.

QGSJET 98 VENUS SIBYLL 1.6 DPMJET II.55 QGSJET 01 SIBYLL 2.1 NEXUS 2 EPOS 1.6 (QGSJET II)

KASCADE Direct Muons

Results:

- -) inconsistencies for all investigated model combinations
- -) problem with the muon energy spectrum predicted by the models?

A.Haungs for KASCADE-Grande, 28th ICRC Tsukuba Japan (2003)

A.Haungs

Summary

- In single collisions some programs show deficits
 - ➡ multiplicities, xlab, Pt, …

🔶 LHC

- Still more data needed, especially for pion-projectiles
 - 🔶 NA61
- Measurable shower parameters (longitudinal, lateral)
 - high-energy model : main contribution
 - Iow-energy model : finer details (~10%)
- No consistent description of all cosmic ray experiment
 - QGSJET01 not to bad in average but certainly fail at Auger
 - Pb : no supported by the author ...
 - SIBYLL/QGSJETII not enough muons
 - EPOS consistent description of data above KASCADE
 - too many muons or shower not deep enough ?

Recommandations for Simulations

High-energy models:

- ➡ DPMJET II.55 to be replaced by DPMJET 3 (to come ...)
- EPOS 1.99 very long CPU-times, but only one with high muon content
- neXus 3 long CPU-times, to be replaced by EPOS
- QGSJET 01 fast, high transition energy recommended
- ➡ QGSJET II-3 replaces QGSJET 01, but slower
- SIBYLL 2.1 fast, (too) low muon content

Low-energy models:

- FLUKA describes experiments best, if suitable objectfile available
- GHEISHA 2002 is now obsolete, despite improvements still insufficient in kinematic
- UrQMD 1.3 needs long CPU times

EAS data

Toy Model for Electromagnetic Cascade

Primary particle : photon/electron

Heitler toy model :

2 particles produced with equal energy

 $\begin{array}{ll} 2^n \text{ particles after} \\ n \text{ interactions} \end{array} \qquad n = X/\lambda_e \end{array}$

$$N(X) = 2^{n} = 2^{X/\lambda_{e}} \qquad E(X) = E_{0}/2^{X/\lambda_{e}}$$

Assumption: shower maximum reached if $E(X_{max}) = E_c$ (critical energy)

$$N_{max} = E_0 / E_c$$
 $X_{max} \sim \lambda_e \ln(E_0 / E_c)$

Muon Number

From Heitler

$$N_{\mu} = \left(\frac{E_0}{E_{dec}}\right)^{\alpha}, \quad \alpha = \frac{\ln N_{\pi^{ch}}}{\ln \left(N_{\pi^{ch}} + N_{\pi^0}\right)}$$

In real shower, not only pions : Kaons and (anti)Baryons (but 10 times less ...)

$$\alpha = \frac{\ln (N_{had})}{\ln (N_{tot})} = 1 + \frac{\ln (R)}{\ln (N_{tot})}$$
$$R = \frac{N_{had}}{N_{tot}} \approx \frac{N_{\pi^{ch}} + N_B}{N_{\pi^{ch}} + N_B + N_{\pi^0}}$$
$$\frac{\text{Very important}}{\text{Very important}} :$$

in (anti)Baryon-Air interactions, no leading neutral pion ! R~1

R depends on the number of (anti)B in p- or π -Air interactions

More fast (anti)baryons = $\alpha \rightarrow 1$ = more muons

T. Pierog et al., Phys. Rev. Lett. 101 (2008) 171101

Baryon Production

more baryons at high energy in EPOS

10

 10^{2}

energy (GeV)

EAS data

Baryon Forward Spectra

- Large differences between models
- Need a new remnant approach for a complete description (EPOS)
- Problems even at low energy
- No measurement at high energy !

CMS Strangeness 7 TeV

ALICE Identified Spectra 900 GeV

Diffraction and x Distributions

- most of the data at low energy (fixed target experiment)
- extrapolation tested with HERA data
- But large differences at CR energies

Pseudorapidity NSD CMS

Cross Section

- Same cross section at pp level and low energy (data)
- extrapolation to pA or to high energy
 - different amplitude and scheme : different extrapolations

Low cross section in EPOS

EAS data