
 Geant4 Detector Response

Geant4 and its Application to HEP and Astrophysics
December 5, 2022 Sunanda Banerjee

Workshop on Geant4 and its Application S. Banerjee

Extraction of Useful information

•Given geometry, physics and primary track generation, Geant4 does proper
physics simulation “silently”
• The user needs to add a bit of code to extract useful information

•There are three ways:

•Use built-in scoring commands
•Most commonly-used physics quantities are available

•Use scorers in the tracking volume
•Create scores for each event
•Create own Run class to accumulate scores

•Assign G4VSensitiveDetector to a volume to generate “hit”
•Use user hooks (G4UserEventAction, G4UserRunAction) to get event / run

summary

• The user may also use user hooks (G4UserTrackingAction,
G4UserSteppingAction, etc.)
• The user has full access to almost all information

2

Workshop on Geant4 and its Application S. Banerjee

Detector Response

•Please refer to the earlier lecture for DetectorConstruction and
ReadOutGeometry

3

Workshop on Geant4 and its Application S. Banerjee

Sensitive Detector

•A G4VSensitiveDetector object can be assigned to a G4LogicalVolume

• In case a step takes place in a logical volume that has a
G4VSensitiveDetector object, this G4VSensitiveDetector is invoked with the
current G4Step object

4

Stepping
Manager

Physics
Process

Particle
Change

Step Track Logical
Volume

Sensitive
Detector

GetPhysicalInteractionLength

SelectShortest

DoIt Fill

Update

Update

IsSensitive

GenerateHits

Workshop on Geant4 and its Application S. Banerjee

Defining a Sensitive Detector

•The basic strategy
G4LogicalVolume* myLogCalor = ……;

G4VSensetiveDetector* pSensetivePart = new MyDetector(“/
mydet”);

G4SDManager* SDMan = G4SDManager::GetSDMpointer();

SDMan->AddNewDetector(pSensitivePart);

myLogCalor->SetSensitiveDetector(pSensetivePart);

•Each detector object must have a unique name

•Some logical volumes can share one detector object

•More than one detector object can be made from one detector class with
different detector name

•One logical volume cannot have more than one detector object. But, one
detector object can generate more than one kind of hits
•e.g. a double-sided silicon micro-strip detector can generate hits for each side

separately

5

Workshop on Geant4 and its Application S. Banerjee

Hit Collection, Hit Map

•G4VHitsCollection is the common abstract base class of both
G4THitsCollection and G4THitsMap

•G4THitsCollection is a template vector class to store pointers of objects of
one concrete hit class type
•A hit class (deliverable of G4VHit abstract base class) should have its own

identifier (e.g. cell ID)

•G4THitsCollection requires the user to implement their own hit class

•G4THitsMap is a template map class that stores keys (typically cell ID, i.e.
copy number of the volume) with pointers of objects of one type

•Objects may not be those of the hit class
•All of the currently provided scorer classes use G4THitsMap with simple double

•Since G4THitsMap is a template, it can be used by the sensitive detector
class to store hits

6

Workshop on Geant4 and its Application S. Banerjee

Sensitive Detector and Hit

•Each Logical Volume can have a pointer to a sensitive detector
• Then this volume becomes sensitive

•Hit is a snapshot of the physical interaction of a track or an accumulation of
interactions of tracks in the sensitive region of your detector

•A sensitive detector creates hit(s) using the information given in the G4Step
object. The user has to provide his/her own implementation of the detector
response

•Hit objects, which are still the user’s class objects, are collected in a
G4Event object at the end of an event

7

Workshop on Geant4 and its Application S. Banerjee

Hit Class

•Hit is a user-defined class derived from G4VHit

• The user can store various types of information by implementing one’s own
concrete Hit class. For example:
•Position and time of the step
•Momentum and energy of the track
•Energy deposition of the step
•Geometrical information
• or any combination of above

•Hit objects of a concrete hit class must be stored in a dedicated collection which is
instantiated from G4THitsCollection template class

•The collection is associated with a G4Event object via G4HCofThisEvent

•Hits are accessible as collections:
• through G4Event at the end of the event
• to be used for analyzing an event

• through G4SDManager during processing an event
• to be used for event filtering

8

Workshop on Geant4 and its Application S. Banerjee

Implementation of Hit class

9

#include "G4VHit.hh"

class MyHit : public G4VHit

{

 public:

 MyHit(some_arguments);

 virtual ~MyHit();

 virtual void Draw();

 virtual void Print();

 private:

 // some data members

 public:

 // some set/get methods

};

#include “G4THitsCollection.hh”

typedef G4THitsCollection<MyHit> MyHitsCollection;

Workshop on Geant4 and its Application S. Banerjee

Sensitive Detector class

•The sensitive detector is a user-defined class derived from the class
G4VSensitiveDetector

10

#include "G4VSensitiveDetector.hh"

#include "MyHit.hh"

class G4Step;

class G4HCofThisEvent;

class MyDetector : public G4VSensitiveDetector

{

 public:

 MyDetector(G4String name);

 virtual ~MyDetector();

 virtual void Initialize(G4HCofThisEvent*HCE);

 virtual G4bool ProcessHits(G4Step*aStep,

 G4TouchableHistory*ROhist);

 virtual void EndOfEvent(G4HCofThisEvent*HCE);

 private:

 MyHitsCollection * hitsCollection;

 G4int collectionID;

};

Workshop on Geant4 and its Application S. Banerjee

Sensitive Detector

•A tracker detector typically generates a hit for every single step of every single
(charged) track
•A tracker hit typically contains
•Position and time
•Energy deposition of the step
•Track identifier
•Some cell identifier

•A calorimeter detector typically generates a hit for every cell and accumulates
energy deposition in each cell for all steps of all tracks
•A calorimeter hit typically contains
•Sum of deposited energy
•Some timing information
•Cell Identifier

• The user can instantiate more than one object for one sensitive detector class.
Each object should have its unique detector name
•For example, each of the two sets of detectors can have its dedicated sensitive

detector objects. But, their functionalities of them are exactly the same as each
other so they can share the same class. See examples/extended/analysis/A01 as
an example

11

Workshop on Geant4 and its Application S. Banerjee

Step

•A Step has two points and also “delta” information of a particle (energy loss
on the step, time-of-flight spent by the step, etc.)

• Each point knows the volume (and material). In case a step is limited by a
volume boundary, the end point physically stands on the boundary, and it
logically belongs to the next volume

•Note that the user must get the volume information from the “PreStepPoint”

12

Pre-step point
Post-step point

Step

Boundary

Workshop on Geant4 and its Application S. Banerjee

Implementation of Sensitive Detector - 1

• In the constructor, the name of the hits collection which is handled by this
sensitive detector is to be defined

• In case the sensitive detector generates more than one kind of hits (e.g.
anode and cathode hits separately), all collection names need to be defined

13

MyDetector::MyDetector(G4String detector_name)

 :G4VSensitiveDetector(detector_name),

 collectionID(-1)

{

 collectionName.insert(“collection_name");

}

Workshop on Geant4 and its Application S. Banerjee

Implementation of Sensitive Detector - 2

• Initialize() method is invoked at the beginning of each event.

•Get the unique ID number for this collection
•GetCollectionID() is a heavy operation. It should not be used for every event
•GetCollectionID() is available after this sensitive detector object is

constructed and registered to G4SDManager. Thus, this method cannot be
invoked in the constructor of this detector class

•The hits collection(s) are to be instantiated and then attached to the
G4HCofThisEvent object given in the argument

• In the case of a calorimeter-type detector, hits for all calorimeter cells may be
instantiated with zero energy depositions, and then inserted into the collection

14

void MyDetector::Initialize(G4HCofThisEvent*HCE)

{

 if(collectionID<0) collectionID = GetCollectionID(0);

 hitsCollection = new MyHitsCollection

 (SensitiveDetectorName,collectionName[0]);

 HCE->AddHitsCollection(collectionID,hitsCollection);

}

Workshop on Geant4 and its Application S. Banerjee

Implementation of Sensitive Detector - 3

•This ProcessHits() method is invoked for every step in the volume(s) where
this sensitive detector is assigned

• In this method, generate a hit corresponding to the current step (for tracking
detector), or accumulate the energy deposition of the current step to the
existing hit object where the current step belongs (for calorimeter detector)

• The geometry information is to be collected (e.g. copy number) from
“PreStepPoint”

•Currently, the returned boolean value is not used
15

G4bool MyDetector::ProcessHits

 (G4Step*aStep,G4TouchableHistory*ROhist)

{

 MyHit* aHit = new MyHit();

 ...

 // some set methods

 ...

 hitsCollection->insert(aHit);

 return true;

}

Workshop on Geant4 and its Application S. Banerjee

Implementation of Sensitive Detector - 4

•This method is invoked at the end of processing an event

• It is invoked even if the event is aborted
• It is invoked before UserEndOfEventAction

16

void MyDetector::EndOfEvent(G4HCofThisEvent*HCE) {;}

Workshop on Geant4 and its Application S. Banerjee

Step Point and Touchable

•As mentioned already, G4Step has two G4StepPoint objects as its starting
and ending points. All the geometrical information of the particular step should
be taken from “PreStepPoint”
•Geometrical information associated with G4Track is identical to

“PostStepPoint”

•Each G4StepPoint object has
•Position in the world coordinate system
•Global and local time
•Material
•G4TouchableHistory for geometrical information

•The G4TouchableHistory object is a vector of information for each geometrical
hierarchy
• copy number
• translation/rotation to its mother

•Since release 4.0, handles (or smart-pointers) to touchable are intrinsically
used. Touchables are reference counted

17

Workshop on Geant4 and its Application S. Banerjee

CopyNo = 2

Copy Number

• geometrical information in G4Track is identical to that in “PostStepPoint”
• the user cannot get the correct copy number for "PreStepPoint" if one

directly accesses the physical volume

•The touchable is to be used to get the proper copy number, transform
matrix, etc.

18

•Suppose a calorimeter is made of 4x5
cells
• and it is implemented by two levels of

replica
• In reality, there is only one physical

volume object for each level. Its
position is parameterized by its copy
number

• To get the copy number of each level
for the cell when the step belongs to
two cells,

CopyNo = 0

CopyNo = 3

CopyNo = 1

0

0

0

0

4

4

4

4

2

2

2

2

1

1

1

1

3

3

3

3

Workshop on Geant4 and its Application S. Banerjee

G4Step* aStep;

G4StepPoint* preStepPoint = aStep->GetPreStepPoint();

G4TouchableHistory* theTouchable =

 (G4TouchableHistory*)(preStepPoint->GetTouchable());

G4int copyNo = theTouchable->GetVolume()->GetCopyNo();

G4int motherCopyNo

 = theTouchable->GetVolume(1)->GetCopyNo();

G4int grandMotherCopyNo

 = theTouchable->GetVolume(2)->GetCopyNo();

G4ThreeVector worldPos = preStepPoint->GetPosition();

G4ThreeVector localPos = theTouchable->GetHistory()

 ->GetTopTransform().TransformPoint(worldPos);

Touchable

• G4TouchableHistory has information on the geometrical hierarchy of the
point.

19

Workshop on Geant4 and its Application S. Banerjee

G4HCofThisEvent

• A G4Event object has a G4HCofThisEvent object at the end of (successful)
event processing. G4HCofThisEvent object stores all hits collections made
within the event.

• Pointer(s) to the collections may be NULL if collections are not created in
the particular event

•Hit collections are stored by pointers of the G4VHitsCollection base class.
Thus, one has to cast them into types of individual concrete classes

•The index number of a Hits collection is unique and unchanged for a run.
The index number can be obtained by

•The index table is also stored in G4Run

20

G4SDManager::GetCollectionID(“detName/colName”);

Workshop on Geant4 and its Application S. Banerjee

Usage of G4HCofThisEvent

21

void MyEventAction::EndOfEventAction(const G4Event* evt) {

 static int CHCID = -1;

 If(CHCID<0) CHCID = G4SDManager::GetSDMpointer()

 ->GetCollectionID("myDet/collection1");

 G4HCofThisEvent* HCE = evt->GetHCofThisEvent();

 MyHitsCollection* CHC = 0;

 if (HCE) {

 CHC = (MyHitsCollection*)(HCE->GetHC(CHCID)); }

 if (CHC) {

 int n_hit = CHC->entries();

 G4cout<<“My detector has ”<<n_hit<<" hits."<<G4endl;

 for (int i1=0;i1<n_hit;i1++) {

 MyHit* aHit = (*CHC)[i1];

 aHit->Print();

 }

 }

}

Workshop on Geant4 and its Application S. Banerjee

When to invoke GetCollectionID()?

•Which is the better place to invoke G4SDManager::GetCollectionID() in a
user event action class, in its constructor or in the BeginOfEventAction()?

• It actually depends on the user's application
•Note that the construction of sensitive detectors (and thus the registration

of their hits collections to SDManager) takes place when the user issues
RunManager::Initialize(), and thus the user’s geometry is constructed.

• In case user's EventAction class should be instantiated before
Runmanager::Initialize() (or /run/initialize command), GetCollectionID()
should not be in the constructor of EventAction.

•While, if the user has nothing to do to Geant4 before
RunManager::Initialize(), this initialize method can be hard-coded in the
main() before the instantiation of EventAction (e.g. exampleA01), so that
GetCollectionID() could be in the constructor

22

Additional Slides

