KASCADE Ne-Nu Analysis

Ralph Engel (as a substitute for Andreas Haungs), for the KASCADE Collaboration
Karlsruhe Institute ofTechnology (KIT)

Equivalent c.m. energy $\sqrt{\mathrm{s}}_{\mathrm{pp}} \quad[\mathrm{GeV}]$

Magnetic fields: Confinement in the Galaxy

Observed spectrum softer than injection spectrum

Knee due to diffusion / escape from Glaxy

Diffusion: same behaviour for different elements at same rigidity $p / Z \sim E / Z$

Knee due to features of acceleration processes

Acceleration: same behaviour for different elements at same rigidity p/Z ~E/Z

Exotic models for knee interpretation

The knee and unusual events at PeV energies

A.A.Petrukhin ${ }^{\text {a }}$

Nuclear Physics B (Proc. Suppl.) 151 (2006) 57-60
${ }^{\text {a }}$ Experimental Complex NEVOD, Moscow Engineering Physics Institute, Kashirskoe shosse, 31, Moscow 115409, Russia

The appearance of the knee in EAS energy spectrum in the atmosphere in PeV energy interval and observation of various types of unusual events approximately at same energies are considered as evidence for new physics. Some ideas about possible new physical processes at PeV energies are described. Perspectives to check these ideas and their consequences for experiments at higher energies are discussed.

$\log (E)$

Limiting scenarios for origin and physics of the knee

Alternative scenarios for origin of knee (i)

Anisotropy likely at some level

SINGLE SNR MODEL OF THE PRIMARY COSMIC RAY ENERGY SPECTRUM WITH He IN THE KNEE

Erlykin \& Wolfendale, J.Phys.G32:I-8,2006

Non-linear shock acceleration

Bell \& Lucek, 200 I (several papers) Berezhko,Völk, ...

Magnetic field amplification, similar end values for different environments

Caprioli, Blasi, Amato, astro-ph/I 007.I 925
$p_{*}=p / m c$

Alternative scenarios for origin of knee (ii)

Biermann model

Model with different acceleration scenarios (polar caps and equatorial region) and different types of SNR

(Stanev et al,ApJ I993)

Update of direct flux measurements

(Seo et al, ICRC 2009)

New CREAM data confirm ATIC2
Crossing of helium and proton fluxes observed!

Air shower ground arrays: $\mathrm{Ne}-\mathrm{N} \mu$ method

Air shower ground arrays: $\mathrm{Ne}-\mathrm{N} \mu$ method

KASCADE

(KArlsruhe Shower Core and Array Detector)

KASCADE in winter

Overview

Array: electrons muons (230 MeV)

Tunnel:

 muon tracking (800 MeV)
Central Detector: hadron calorimeter (hadrons, 50 GeV) trigger plane (muons, 490 MeV) muon chambers, LST (muons, 2.4 GeV)

KASCADE Hadron-Calorimeter

Central detector

Hadron calorimeter 320 m$^{2} \times 9$ layers

J. Engler et al., NIM A 427 (I999) 528

Muon tunnel

limited streamer tubes (argon - isobutane)

24576 electronic channels

$$
\mathrm{E}_{\mu}>800 \mathrm{MeV}
$$

144 m$^{2} \times 4$ layers

Muon Tracking Detector Central detector

Array detector station

T. Antoni et al., NIM A 513 (2003) 490

Electron and muon detectors

Electron detectors

time resolution 0.77 ns energy resolution 8\%
dynamic range I/4 ... 2000 m.i.p.

Muon detectors

time resolution 2.9 ns energy resolution 10\% uniformity better than 2\%

Particle density reconstruction in KASCADE

Energy deposit

arrival time

Cross-check of shower reconstruction and simulation

Checkerboard analysis

- data reconstruction with every second detector
- simulated data reconstructed same way
- difference between reconstructions

Cross check of detector calibration and simulation

Simulation of inclusive muon flux

Comparison of muon signal in data and simulation (no tuning)

Good agreement found

Determination of electron and muon numbers

Modified NKG fit, corrected for $E_{e}>3 \mathrm{MeV}$

$$
\begin{aligned}
& \rho(r)=N_{e} \cdot c(s) \cdot\left(\frac{r}{r_{0}}\right)^{s-\alpha}\left(1+\frac{r}{r_{0}}\right)^{s-\beta} \\
& \alpha=1.5 \quad \beta=3.6 \quad r_{0}=40 \mathrm{~m}
\end{aligned}
$$

Modified NKG fit, $E_{\mu}>230 \mathrm{MeV}$

$$
\begin{aligned}
& \alpha=1.5 \quad \beta=3.7 \quad r_{0}=420 \mathrm{~m} \\
& \text { truncated to } 40-200 \mathrm{~m} \\
& \text { effective age taken from simulations }
\end{aligned}
$$

Mass composition as inverse problem (i)

Event selection

- zenith angle $\theta<18^{\circ}$
- core $\mathrm{R}<91 \mathrm{~m}$ from center
- $\lg \mathrm{N}_{\mathrm{e}}>4.8$
- $\lg \mathrm{N}_{\mu}>3.6$
- reconstruction quality

Mass composition as inverse problem (ii)

Event selection

- zenith angle $\theta<18^{\circ}$
- core $\mathrm{R}<91 \mathrm{~m}$ from center
- $\lg \mathrm{N}_{\mathrm{e}}>4.8$
- $\lg \mathrm{N}_{\mu}>3.6$
- reconstruction quality
$N_{i}=$ const. $\cdot \sum_{A=1}^{N_{A}} \int_{\theta_{1}}^{\theta_{2}} \int_{-\infty}^{+\infty} \frac{d J_{A}}{\operatorname{dlg} E} \times p_{A}\left(\left(\lg N_{e}, \lg N_{\mu}\right)_{i} \mid \lg E\right) \times f(\theta) \operatorname{dlg} E \mathrm{~d} \theta$
N_{i} : number of showers in one cell
A : mass number of primary ($\mathrm{H}, \mathrm{He}, \mathrm{C}, \mathrm{Si}, \mathrm{Fe}$)

Unfolding done with
Gold algorithm
$\frac{d J_{A}}{\operatorname{dlg} E}$: sought-after energy spectrum
p_{A} : probability to reconstruct sizes $\lg N_{e}$ and $\lg N_{\mu}$

Determination of efficiency and fluctuations

$$
N_{i}=\text { const. } \cdot \sum_{A=1}^{N_{A}} \int_{\theta_{1}}^{\theta_{2}} \int_{-\infty}^{+\infty} \frac{d J_{A}}{\operatorname{dlg} E} \times p_{A}\left(\left(\lg N_{e}, \lg N_{\mu}\right)_{i} \mid \lg E\right) \times f(\theta) \operatorname{dlg} E \mathrm{~d} \theta
$$

$$
p_{A}=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} s_{A} \epsilon_{A} r_{A} \operatorname{dlg} N_{e}^{\text {true }} \operatorname{dlg} N_{\mu}^{\text {true }}
$$

S_{A} : shower fluctuations
ϵ_{A} : efficiencies
r_{A} : reconstruction uncertainties

Parametrization of fluctuations

Extrapolation very important for systematic uncertainties

Two-dimensional distribution!

Parametrization of effciency with fully simulated showers (no thinning)
Parametrization of fluctuations

- large statistics simulation, thinned showers
- fixed energies ($\mathrm{E}=0.1 \mathrm{I} .5,2,5,10,30,100,300,1000,3000 \mathrm{PeV}$)

Estimated reconstruction uncertainty

Contributions to overall fluctuations

RMS calculated for quantifying fluctuations, done for comparison only

Electron number $\lg \mathrm{N}_{\mathrm{e}}$

Electrons: shower-to-shower fluctuations dominating

Muons: both contributions important

KASCADE analysis with QGSJET and SIBYLL

Available online at www.sciencedirect.com
sciencedoirect ${ }^{\text {® }}$

Astroparticle Physics 24 (2005) 1-25

Astroparticle
 Physics

www.elsevier.com/locate/astropart

KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems

T. Antoni ${ }^{\text {a }}$, W.D. Apel ${ }^{\text {b }}$, A.F. Badea ${ }^{\text {b,1 }}$, K. Bekk ${ }^{\text {b }}$, A. Bercuci ${ }^{\text {c }}$, J. Blümer ${ }^{\text {b,a }}$, H. Bozdog ${ }^{\text {b }}$, I.M. Brancus ${ }^{\text {c }}$, A. Chilingarian ${ }^{\text {d }}$, K. Daumiller ${ }^{\text {b }}$, P. Doll ${ }^{\text {b }}$, R. Engel ${ }^{\text {b }}$, J. Engler ${ }^{\text {b }}$, F. Feßler ${ }^{\text {b }}$, H.J. Gils ${ }^{\text {b }}$, R. Glasstetter ${ }^{\text {a, } 2}$, A. Haungs ${ }^{\text {b }}$, D. Heck ${ }^{\text {b }}$, J.R. Hörandel ${ }^{\text {a }}$, K.-H. Kampert ${ }^{\text {a,b,2, }}$, H.O. Klages ${ }^{\text {b }}$, G. Maier ${ }^{\text {b,3 }}$, H.J. Mathes ${ }^{\text {b }}$, H.J. Mayer ${ }^{\text {b }}$, J. Milke ${ }^{\text {b }}$, M. Müller ${ }^{\text {b }}$, R. Obenland ${ }^{\text {b }}$, J. Oehlschläger ${ }^{\text {b }}$, S. Ostapchenko ${ }^{\text {b,4 }}$, M. Petcu ${ }^{\text {c }}$, H. Rebel ${ }^{\text {b }}$, A. Risse ${ }^{\mathrm{e}}$, M. Risse ${ }^{\text {b }}$, M. Roth ${ }^{\text {a }}$, G. Schatz ${ }^{\text {b }}$, H. Schieler ${ }^{\text {b }}$, J. Scholz ${ }^{\text {b }}$, T. Thouw ${ }^{\text {b }}$, H. Ulrich ${ }^{\text {b,* }}$, J. van Buren ${ }^{\text {b }}$, A. Vardanyan ${ }^{\text {d }}$, A. Weindl ${ }^{\text {b }}$, J. Wochele ${ }^{\text {b }}$, J. Zabierowski ${ }^{\text {e }}$

QGSJet 01 - result Description of data
forward folding of solution with calculated probabilities, calculation of how the data would look like comparison between calculated and measured data: χ^{2}

SIBYLL 2.1 - result Description of data
forward folding of solution with calculated probabilities, calculation of how the data would look like

KASCADE: Composition in knee region (2005)

KASCADE Collab.
Astropart. Phys. 24 (2005) I

KASCADE all-particle spectrum (2005)

5 assumed primary particle types: $\mathrm{H}, \mathrm{He}, \mathrm{C}, \mathrm{Si}, \mathrm{Fe}$
3 different hadronic interaction models (QGSJet 01, QGSJet II, and SIBYLL 2.1)

New analysis of KASCADE data (2010)

- Same analysis methods
- Same unfolding algorithm, but stop criterium optimized
- Higher statistics in data
- New version of CORSIKA
- New low-energy model ($\mathrm{E}_{\text {lab }}<80 \mathrm{GeV}$) FLUKA
- New versions of QGSJET and EPOS

Results preliminary, work in progress

Main contributers

2005: Holger Ulrich, see PhD thesis and Astropat. Phys. 24 (2005) I
2010: Marcel Finger, PhD thesis in preparation

KASCADE data vs. QGSJET 0 I and QGSJET II

QGSJET01

QGSJETII

- $\chi_{i}^{2}=\frac{\left(N_{i}^{\text {meas. }}-N_{i}^{\text {rec. }}\right)^{2}}{\sigma_{i}^{2}}$
- $\chi^{2} / n d f=1.29$ for QGSJETII and 1.34 for QGSJET01

KASCADE data vs. EPOS I. 99 and SIBYLL

EPOS1.99
SIBYLL

- $\left.\chi_{i}^{2}=\frac{\left(N_{i}^{\text {meas. }} . ~\right.}{\text { inec. }}\right)^{2} \sigma_{i}^{2}$
- $\chi^{2} / n d f=1.79$ for EPOS1.99 and 1.77 for SIBYLL

KASCADE: Composition in knee region (2010)

QGSJET OI / FLUKA

QGSJET II. 03 / FLUKA

KASCADE: Composition in knee region (2010)

EPOS I. 99 / FLUKA

SIBYLL 2.I / FLUKA

KASCADE all-particle spectrum (2010)

Results preliminary, work in progress

Good agreement between different spectra, some difference between EPOS and other models found

KASCADE-Grande

Collaboration

Universität Siegen Experimentelle Teilchenphysik
P. Buchholz, C.Grupen,
D.Kickelbick, S.Over

Universität Wuppertal
Fachbereich Physik
D. Fuhrmann, R. Glasstetter, K-H. Kampert
S. Ostapchenko IFSI, INAF and University of Torino M. Bertaina, E. Cantoni, A. Chiavassa, F. Di Pierro, P.L. Ghia, C. Morello, G. Navarra*, G. Trinchero

Universidad Michoacana Morelia, Mexico J.C. Arteaga

Institut für Kernphysik \& Institut für Experimentelle Kernphysik KIT - Karlsruhe Institute of Technology
W.D.Apel, K.Bekk, J.Blümer, H.Bozdog, F.Cossavella, K.Daumiller, P.Doll, R.Engel, J.Engler, M.Finger, H.J.Gils, A.Haungs, D.Heck, T.Huege, P.G.Isar, D.Kang, H.O.Klages, K.Link, M.Ludwig, H.-J.Mathes, H.J.Mayer, M.Melissas, J.Milke, S.Nehls, J.Oehlschläger, N.Palmieri, T.Pierog, H.Rebel, M.Roth, H.Schieler, F.Schröder, H.Ulrich, A.Weindl, J.Wochele, M.Wommer

Radboud University
Nijmegen J.R.Hörandel

Soltan Institute for Nuclear Studies, Lodz P. Luczak, J. Zabierowski

Institute of Physics and Nuclear Engeneering and University Bucharest
I.M. Brancus, B. Mitrica, M. Petcu, O. Sima, G. Toma

Universidade Sao Paulo, Brasil V. de Souza http://www-ik.fzk.de/KASCADE-Grande/

