a new window to see the Universe

Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai

"Scienter" Stage, Vigyan Samagam Nehru Science Centre, Mumbai, May 8th, 2019

Neutrinos: a new window to see the Universe

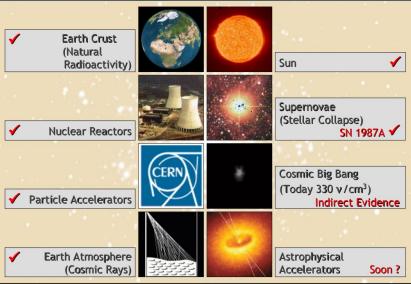
1 Neutrinos in particle physics, astrophysics, cosmology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Looking at the sky in neutrinos

Neutrinos: a new window to see the Universe

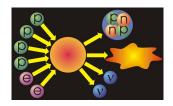
Neutrinos in particle physics, astrophysics, cosmology


2 Neutrino masses and mixing

3 Looking at the sky in neutrinos

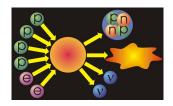
◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●


Omnipresent neutrinos



Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

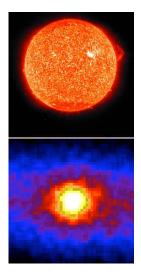
How does the sun shine ?



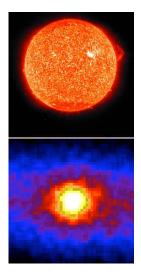
• Nuclear fusion reactions: effectively $4 {}_{1}^{1}H + 2e^{-} \rightarrow {}_{2}^{4}He + light$

How does the sun shine ?

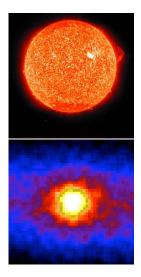
• Nuclear fusion reactions: effectively 4 $_{1}^{1}H + 2e^{-} \rightarrow_{2}^{4}He + light$ $+ 2\nu_{e}$


 Neutrinos needed to conserve energy, momentum, angular momentum in all the steps

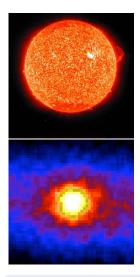
Neutrinos essential for the Sun to shine !!



Davis-Koshiba Nobel prize 2002


 A few hundred trillion solar neutrinos per second through the human body, go undetected

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの


- A few hundred trillion solar neutrinos per second through the human body, go undetected
- The same number of neutrinos during the day and the night !

(日) (日) (日) (日) (日) (日) (日)

- A few hundred trillion solar neutrinos per second through the human body, go undetected
- The same number of neutrinos during the day and the night !
- Light from the Sun's surface: due to nuclear reactions millions of years ago
- Neutrinos from the Sun's core: due to nuclear reactions 8 minutes ago

(日) (日) (日) (日) (日) (日) (日)

- A few hundred trillion solar neutrinos per second through the human body, go undetected
- The same number of neutrinos during the day and the night !
- Light from the Sun's surface: due to nuclear reactions millions of years ago
- Neutrinos from the Sun's core: due to nuclear reactions 8 minutes ago

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

How to make sense of these features ?

Stopping radiation with lead shielding

• Stopping α, β, γ radiation: 50 cm

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead !

(日) (日) (日) (日) (日) (日) (日)

Stopping radiation with lead shielding

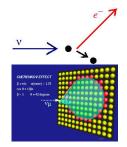
- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead !

Understanding the three features

- Why do we not notice neutrinos passing through us? Neutrinos pass through our bodies without interacting
- Why do neutrinos from the Sun reach us during night ? Neutrinos pass through the Earth without interacting
- Why can the neutrinos reach us from the core of the Sun ? Neutrinos pass through the Sun without interacting

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead !

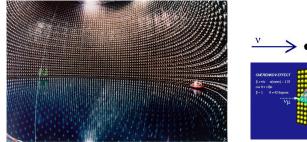

Understanding the three features

- Why do we not notice neutrinos passing through us? Neutrinos pass through our bodies without interacting
- Why do neutrinos from the Sun reach us during night ? Neutrinos pass through the Earth without interacting
- Why can the neutrinos reach us from the core of the Sun ? Neutrinos pass through the Sun without interacting

How do we see the neutrinos then ?

How to detect neutrinos: wait till they interact !

How to detect neutrinos: wait till they interact !

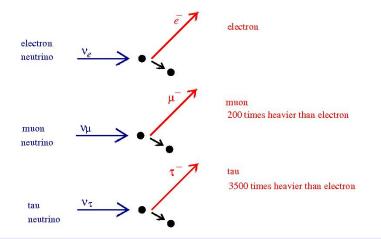


SuperKamiokande: 50 000 000 litres of water

- Neutrinos from the Sun:
 - \sim 100 trillion through a human body per second
- SuperKamiokande observes about 5-10 neutrinos per day

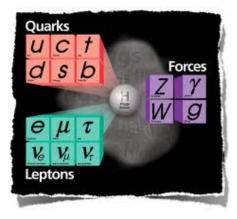
・ロト ・四ト ・ヨト ・ヨト

How to detect neutrinos: wait till they interact !


SuperKamiokande: 50 000 000 litres of water

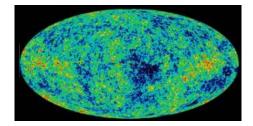
- Neutrinos from the Sun:
 - \sim 100 trillion through a human body per second
- SuperKamiokande observes about 5-10 neutrinos per day

Recipe for observing neutrinos


- Build very large detectors
- Wait for a very long time

Three kinds ("flavours") of neutrinos: $\nu_e \quad \nu_\mu \quad \nu_\tau$

Antineutrinos $\overline{\nu}_e, \overline{\nu}_\mu, \overline{\nu}_\tau$ produce positively charged particles


The Standard Model of Particle Physics

- 3 neutrinos:
 - $\nu_{e}, \nu_{\mu}, \nu_{\tau}$
- Zero charge
- spin 1/2
- almost massless: at least a million times lighter than electron

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The second-most abundant particles in the universe

- Cosmic microwave background: 400 photons/ cm 3 Temperature: \sim 3 K
- Cosmic neutrino background: 300 neutrinos / cm 3 Temperature: \sim 2 K

Even empty space between galaxies is full of neutrinos !

(日) (日) (日) (日) (日) (日) (日)

Role of neutrinos in creating the Earth

- Earth has elements heavier than iron, which cannot be created inside the Sun, or in any ordinary star
- This can happen only inside an exploding star (supernova)!
- A supernova must have exploded billions of years ago whose fragments formed the solar system

(日) (日) (日) (日) (日) (日) (日)

Role of neutrinos in creating the Earth

- Earth has elements heavier than iron, which cannot be created inside the Sun, or in any ordinary star
- This can happen only inside an exploding star (supernova)!
- A supernova must have exploded billions of years ago whose fragments formed the solar system

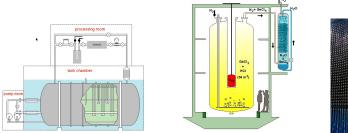
(日) (日) (日) (日) (日) (日) (日)

Supernovae explode because ... neutrinos push the shock wave from inside ! Lack of antimatter in the universe cannot be accounted for by interactions of quarks

 Neutrinos have the potential to create the matter-antimatter asymmetry, essential for a universe made of matter

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Neutrinos: a new window to see the Universe

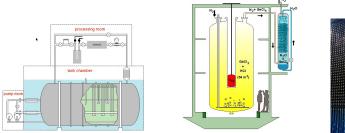

Neutrinos in particle physics, astrophysics, cosmology

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

2 Neutrino masses and mixing

3 Looking at the sky in neutrinos

The solar neutrino puzzle (1960s – 2002)


 $\nu_{e} + \text{Cl} \rightarrow \text{Ar} + e^{-}$ $\nu_{e} + \text{Ga} \rightarrow \text{Ge} + e^{-}$ Homestake

Gallex

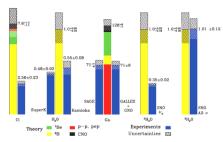
 $\nu_e + e^- \rightarrow \nu_e + e^-$ SuperKamiokande

- The sun produces ν_e , can detect at the Earth
- The number of neutrinos should match Sun's energy output

The solar neutrino puzzle (1960s – 2002)

 $\nu_{e} + \text{Cl} \rightarrow \text{Ar} + e^{-}$ $\nu_{e} + \text{Ga} \rightarrow \text{Ge} + e^{-}$ Homestake

Gallex

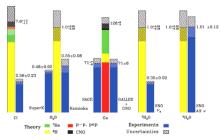

 $\nu_e + e^- \rightarrow \nu_e + e^-$ SuperKamiokande

- The sun produces ν_e , can detect at the Earth
- The number of neutrinos should match Sun's energy output
- A deficit of 30% 50% at all detectors !
- Do we understand the Sun at all ?

Solar ν puzzle solution: neutrino flavor conversion

Maybe the neutrino flavors change !

- All the experiments are looking for ν_e
- Maybe ν_e are getting converted to $(\nu_\mu \text{ or } \nu_\tau)$?
- If we detect all neutrino flavors, numbers match \Rightarrow



Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

Solar ν puzzle solution: neutrino flavor conversion

Maybe the neutrino flavors change !

- All the experiments are looking for ν_e
- Maybe ν_e are getting converted to $(\nu_\mu \text{ or } \nu_\tau)$?
- If we detect all neutrino flavors, numbers match \Rightarrow

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

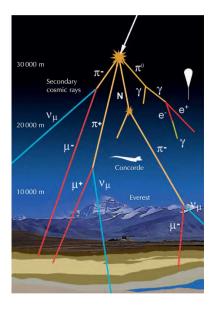
Possible, if the neutrinos have different masses and they mix !

What is meant by neutrino mixing ?

Neutrino flavours $\nu_{e}, \nu_{\mu}, \nu_{\tau}$ do not have fixed masses !!

For example, $\nu_e - \nu_\mu$ mixing: $\nu_2 = -\nu_e \sin \theta + \nu_\mu \cos \theta$ $\nu_i = \nu_e \cos \theta + \nu_\mu \sin \theta$ $\cos^2 \theta = \sin^2 \theta$

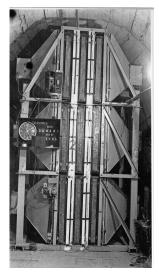
(日) (日) (日) (日) (日) (日) (日)


What is meant by neutrino mixing ?

Neutrino flavours ν_e, ν_μ, ν_τ do not have fixed masses !!

For example, $\nu_e - \nu_\mu$ mixing: $V_2 = -V_e \sin \theta + V_\mu \cos \theta$ $V_I = V_e \cos \theta + V_\mu \sin \theta$ $\cos^2 \theta \qquad \sin^2 \theta$

- Only ν₁ and ν₂ have fixed masses (*They are eigenstates of energy / eigenstates of evolution*)
- Then, if you produce ν_e , it may convert to ν_μ !
- This is quantum mechanics at large length scales !


The atmospheric neutrinos

• $\pi^+ \rightarrow \mu^+ + \nu_\mu$ • $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The first "atmospheric" neutrinos detected in India

Detector in Kolar Gold Fields

DETECTION OF MUONS PRODUCED BY COSMIC RAY NEUTRINO DEEP UNDERGROUND

C. V. ACHAR, M. G. K. MENON, V. S. NARASIMHAM, P. V. RAMANA MURTHY and B. V. SREEKANTAN, Tata Institute of Fundamental Research. Colaba. Bombay

> K. HINOTANI and S. MIYAKE, Osaka City University, Osaka, Japan

D. R. CREED, J. L. OSBORNE, J. B. M. PATTISON and A. W. WOLFENDALE University of Durham, Durham, U.K.

Received 12 July 1965

Physics Letters 18, (1965) 196 (15th Aug 1965)

EVIDENCE FOR HIGH-ENERGY COSMIC-RAY NEUTRINO INTERACTIONS* F. Reines, M. F. Crouch, T. L. Jenkins, W. R. Kropp, H. S. Gurr, and G. R. Smith Case Institute of Technology, Cleveland, Ohio

and

J. P. F. Sellschop and B. Meyer University of the Witwatersrand, Johannesburg, Republic of South Africa (Received 25 July 1965)

> PRL 15, (1965) 429 (30th Aug 1965)

> > ▲□▶▲□▶▲□▶▲□▶ □ のQ@

Atmospheric neutrino puzzle and its solution

The puzzle

• Half of the ν_{μ} lost when coming "up" through the Earth

(日) (日) (日) (日) (日) (日) (日)

All ν_e, and down-going ν_μ accounted for !

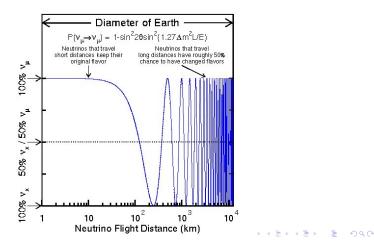
Atmospheric neutrino puzzle and its solution

The puzzle

- Half of the ν_{μ} lost when coming "up" through the Earth
- All ν_e, and down-going ν_μ accounted for !

If neutrinos have masses and they mix...

- Neutrinos travelling longer will have more time to convert to other neutrino flavours
- More "Up" neutrinos travelling through the Earth will be lost, than those coming "Down" from above


 The loss must be mainly through ν_μ → ν_τ, and not much through ν_μ → ν_e.

Neutrino "oscillations"

Neutrino flavours "oscillate"

 $P(
u_{\mu}
ightarrow
u_{x}) = \sin^{2} 2 heta \sin^{2}\left(rac{\Delta m^{2}L}{4E}
ight)$

$$(\Delta m^2 = m_2^2 - m_1^2)$$

Nobel Prize in Physics 2015

Arthur McDonald Queen's U., Canada

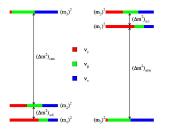
(日) (日) (日) (日) (日) (日) (日)

The Citation

"... for the discovery of neutrino oscillations, which shows that neutrinos have mass."

Nobel Prize in Physics 2015

Arthur McDonald Queen's U., Canada


The Citation

" ... for the discovery of neutrino oscillations, which shows that neutrinos have mass."

How do neutrinos get their mass ? unresolved question

The three-neutrino mixing picture: consolidation

Mixing of ν_e , ν_μ , $\nu_\tau \Rightarrow \nu_1$, ν_2 , ν_3 (mass eigenstates)

- $\Delta m_{\rm atm}^2 \approx 2.4 \times 10^{-3} \ eV^2$
- $\Delta m_{\odot}^2 \approx 8 \times 10^{-5} \text{ eV}^2$
- $\theta_{\rm atm} \approx 45^{\circ}$
- $\theta_{\odot} \approx 32^{\circ}$

• $\theta_{\rm reactor} \approx 9^{\circ}$

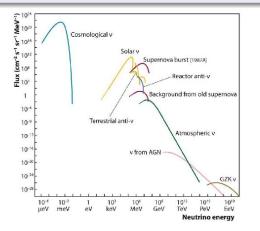
- Mass ordering: Normal (N) or Inverted (I) ?
- What are the absolute neutrino masses ?
- Are there more than 3 neutrinos ?
- Is there leptonic CP violation ?
- Can neutrinos be their own antiparticles ?

Neutrinos: a new window to see the Universe

Neutrinos in particle physics, astrophysics, cosmology

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

2 Neutrino masses and mixing


Neutrinos as messengers from the universe

Neutrinos as good messengers

- No bending in magnetic fields \Rightarrow point back to the source
- Minimal obstruction / scattering ⇒ can arrive directly from regions from where light cannot come

ASPERA

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The big-bang relic neutrinos ($\sim 0.1 \text{ meV}$)

- Relic density: ~ 110 neutrinos /flavor /cm³
- Temperature: $T_{\nu} = (4/11)^{1/3} T_{\text{CMB}} \approx 1.95 \text{ K} = 0.17 \text{ meV}$

・ロト・日本・日本・日本・日本

The big-bang relic neutrinos ($\sim 0.1 \text{ meV}$)

- Relic density: ~ 110 neutrinos /flavor /cm³
- Temperature: $T_{\nu} = (4/11)^{1/3} T_{\text{CMB}} \approx 1.95 \text{ K} = 0.17 \text{ meV}$
- The effective number of neutrino flavors: $N_{\rm eff}({
 m SM}) = 3.074$. Planck $\Rightarrow N_{\rm eff} = 3.30 \pm 0.27$.
- Contribution to dark matter density:

$$\Omega_{\nu}/\Omega_{
m baryon} = 0.5 \left(\sum m_{\nu}/{
m eV}\right)$$

The big-bang relic neutrinos ($\sim 0.1 \text{ meV}$)

- Relic density: \sim 110 neutrinos /flavor /cm³
- Temperature: $T_{\nu} = (4/11)^{1/3} T_{\text{CMB}} \approx 1.95 \text{ K} = 0.17 \text{ meV}$
- The effective number of neutrino flavors: $N_{\rm eff}({
 m SM}) = 3.074$. Planck $\Rightarrow N_{\rm eff} = 3.30 \pm 0.27$.
- Contribution to dark matter density:

$$\Omega_{
u}/\Omega_{
m baryon} = 0.5 \left(\sum m_{
u}/
m eV
ight)$$

Looking really far back:

	Time	$T_{\text{decoupling}}$	Z
CMB photons	\sim 400,000 years	0.26 eV	1100
Relic neutrinos	0.18 s	\sim 2 MeV	$\sim 10^{10}$
	Lazauskas, Vogel, Volpe, 2008		

Experiments with induced inverse beta decay end-point $\nu_e + \frac{A}{Z}X \rightarrow \frac{A}{Z+1}Y + e^-$

Neutrinos from a galactic supernova (\sim 10 MeV)

On neutrino masses and mixing

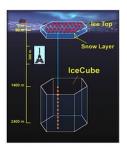
- Instant identification of neutrino mass ordering (N or I), through
 - Neutronization burst: (almost) disappears if N

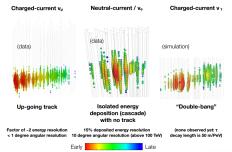
・ロト・日本・日本・日本・日本

• Shock wave effects: in ν ($\bar{\nu}$) for N (I)

Neutrinos from a galactic supernova (\sim 10 MeV)

On neutrino masses and mixing

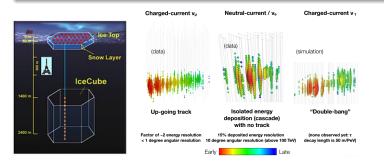

- Instant identification of neutrino mass ordering (N or I), through
 - Neutronization burst: (almost) disappears if N
 - Shock wave effects: in ν ($\bar{\nu}$) for N (I)


On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)
- Possible identification of QCD phase transition, SASI (Standing Accetion Shock) instabilities
- Hints on heavy element nucleosynthesis (r-process)

High energy astrophysical neutrinos ($\gtrsim 100 \text{ GeV}$)

Gigaton IceCube: 1 000 000 000 000 litres of ice

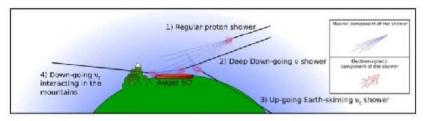


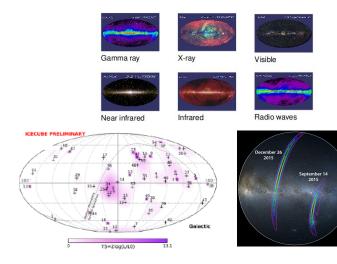
▲□▶▲□▶▲□▶▲□▶ □ のQ@

High energy astrophysical neutrinos (\gtrsim 100 GeV)

Gigaton IceCube: 1 000 000 000 000 litres of ice

- Three events at ~ 1, 1.1, 2.2 PeV energies found
- Search for origin, correlations with directions of UHECR
- Constraints on Lorentz violation: $\delta(v^2 1) \lesssim \mathcal{O}(10^{-18})$
- Flavor ratios tell about sources, possible new physics

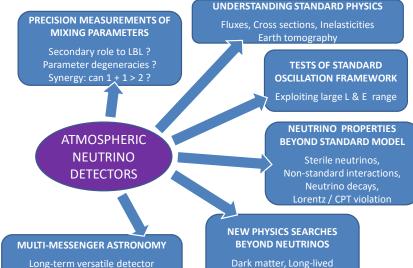

Ultrahigh energy neutrinos ($\gtrsim 10^{16} \text{ eV}$)



Auger

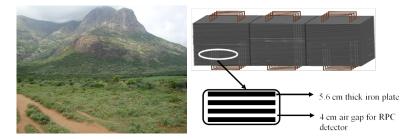
ANITA (balloon)

Multimessenger astronomy


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Blazar at IceCube, followup by telescopes

Role of atmospheric neutrino (\sim 1 GeV) experiments


keeping its eyes open Supernovae, GRBs, AGNs, Blazars, ...

ヘロン 人間 とくほど くほとう

э.

particles, Magnetic monopoles

Coming soon inside a mountain near you: INO

India-based Neutrino Observatory

- In a tunnel below a peak (Bodi West Hills, near Madurai)
- 1 km rock coverage from all sides
- 50 kiloton of magnetized iron (50 000 000 kg)
- Can distinguish neutrinos from antineutrinos
- Determining mass hierarchy from atmospheric neutrinos

Neutrinos: a new window to the Universe

• At extremely small scales: identifying mechanism for generating neutrino masses and mixing pattern

 At extremely large scales: understanding astrophysical / cosmological phenomena

• Speculative applications: nuclear non-proliferation, Earth tomography, oil exploration, communication, ...