The many uses of fermions with exact chiral symmetry on the lattice

Sayantan Sharma

The Institute of Mathematical Sciences

November 19, 2019

Sayantan Sharma QCD in the non-perturbative regime, TIFR Slide 1 of 18

・ 同 ト ・ ヨ ト ・ ヨ ト

• The chirality of fermions play a crucial role in myriad of physical processes from the early universe to material science. Exotic transport properties like Chiral Magnetic effect!

[Kharzeev, McLerran, Warringa, 07]

- In QCD, it is responsible for very light pions
- Quantum anomalies in the chiral sector of QCD decide also the order of the phase transition. [Pisarski & Wilczek, 83]
- It was the first assignment given by Rajiv when I started to learn lattice gauge theory from him.

• The chirality of fermions play a crucial role in myriad of physical processes from the early universe to material science. Exotic transport properties like Chiral Magnetic effect!

[Kharzeev, McLerran, Warringa, 07]

- In QCD, it is responsible for very light pions
- Quantum anomalies in the chiral sector of QCD decide also the order of the phase transition. [Pisarski & Wilczek, 83]
- It was the first assignment given by Rajiv when I started to learn lattice gauge theory from him.

• The chirality of fermions play a crucial role in myriad of physical processes from the early universe to material science. Exotic transport properties like Chiral Magnetic effect!

[Kharzeev, McLerran, Warringa, 07]

- In QCD, it is responsible for very light pions
- Quantum anomalies in the chiral sector of QCD decide also the order of the phase transition. [Pisarski & Wilczek, 83]
- It was the first assignment given by Rajiv when I started to learn lattice gauge theory from him.

A B > A B > A B >

• The chirality of fermions play a crucial role in myriad of physical processes from the early universe to material science. Exotic transport properties like Chiral Magnetic effect!

[Kharzeev, McLerran, Warringa, 07]

- In QCD, it is responsible for very light pions
- Quantum anomalies in the chiral sector of QCD decide also the order of the phase transition. [Pisarski & Wilczek, 83]
- It was the first assignment given by Rajiv when I started to learn lattice gauge theory from him.

• Defining chiral non-Abelian Gauge theories on the lattice is notoriously difficult. Still unsolved!

- Even formulating vector theories like QCD with fermions having exact chiral symmetry on the lattice was a challenging problem.
- It took 20 yrs since the discovery of Wilson fermions to develop domain wall [Kaplan, 92] and overlap [Narayanan & Neuberger, 93] fermions.
- Rajiv was deeply worried about how to incorporate μ_B in a manner that DW/OV fermions maintain their exact chiral properties on the lattice.
- Through couple of years of struggles and new revelations we now know how to do it! [Gavai & S.S., Phys. Lett. B. 716, 2012, Narayanan and S.S. JHEP 2011.]
- Thanks to Rajiv all these years have been very exciting for me!

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- Defining chiral non-Abelian Gauge theories on the lattice is notoriously difficult. Still unsolved!
- Even formulating vector theories like QCD with fermions having exact chiral symmetry on the lattice was a challenging problem.
- It took 20 yrs since the discovery of Wilson fermions to develop domain wall [Kaplan, 92] and overlap [Narayanan & Neuberger, 93] fermions.
- Rajiv was deeply worried about how to incorporate μ_B in a manner that DW/OV fermions maintain their exact chiral properties on the lattice.
- Through couple of years of struggles and new revelations we now know how to do it! [Gavai & S.S., Phys. Lett. B. 716, 2012, Narayanan and S.S. JHEP 2011.]
- Thanks to Rajiv all these years have been very exciting for me!

- Defining chiral non-Abelian Gauge theories on the lattice is notoriously difficult. Still unsolved!
- Even formulating vector theories like QCD with fermions having exact chiral symmetry on the lattice was a challenging problem.
- It took 20 yrs since the discovery of Wilson fermions to develop domain wall [Kaplan, 92] and overlap [Narayanan & Neuberger, 93] fermions.
- Rajiv was deeply worried about how to incorporate μ_B in a manner that DW/OV fermions maintain their exact chiral properties on the lattice.
- Through couple of years of struggles and new revelations we now know how to do it! [Gavai & S.S., Phys. Lett. B. 716, 2012, Narayanan and S.S. JHEP 2011.]
- Thanks to Rajiv all these years have been very exciting for me!

イロト 不得 とくほ とくほう

- Defining chiral non-Abelian Gauge theories on the lattice is notoriously difficult. Still unsolved!
- Even formulating vector theories like QCD with fermions having exact chiral symmetry on the lattice was a challenging problem.
- It took 20 yrs since the discovery of Wilson fermions to develop domain wall [Kaplan, 92] and overlap [Narayanan & Neuberger, 93] fermions.
- Rajiv was deeply worried about how to incorporate μ_B in a manner that DW/OV fermions maintain their exact chiral properties on the lattice.
- Through couple of years of struggles and new revelations we now know how to do it! [Gavai & S.S., Phys. Lett. B. 716, 2012, Narayanan and S.S. JHEP 2011.]
- Thanks to Rajiv all these years have been very exciting for me!

A B > A B > A B >

- Defining chiral non-Abelian Gauge theories on the lattice is notoriously difficult. Still unsolved!
- Even formulating vector theories like QCD with fermions having exact chiral symmetry on the lattice was a challenging problem.
- It took 20 yrs since the discovery of Wilson fermions to develop domain wall [Kaplan, 92] and overlap [Narayanan & Neuberger, 93] fermions.
- Rajiv was deeply worried about how to incorporate μ_B in a manner that DW/OV fermions maintain their exact chiral properties on the lattice.
- Through couple of years of struggles and new revelations we now know how to do it! [Gavai & S.S., Phys. Lett. B. 716, 2012, Narayanan and S.S. JHEP 2011.]
- Thanks to Rajiv all these years have been very exciting for me!

・ロト ・ 一下・ ・ ヨト ・ ヨト

- Defining chiral non-Abelian Gauge theories on the lattice is notoriously difficult. Still unsolved!
- Even formulating vector theories like QCD with fermions having exact chiral symmetry on the lattice was a challenging problem.
- It took 20 yrs since the discovery of Wilson fermions to develop domain wall [Kaplan, 92] and overlap [Narayanan & Neuberger, 93] fermions.
- Rajiv was deeply worried about how to incorporate μ_B in a manner that DW/OV fermions maintain their exact chiral properties on the lattice.
- Through couple of years of struggles and new revelations we now know how to do it! [Gavai & S.S., Phys. Lett. B. 716, 2012, Narayanan and S.S. JHEP 2011.]
- Thanks to Rajiv all these years have been very exciting for me!

- Overlap fermions has an index theorem even on a finite lattice → it's zero modes can track the topological constituents of QCD.
- Using them to probe the topology in gauge theories revealed onset of a dilute gas of instantons quite early $\sim 1.1 T_d!$

[Edwards, Heller & Narayanan, 98, 99, Gavai & Gupta 02]

• For QCD, though the zero and near-zero modes survive quite longer into the chiral-symmetry restored phase.

[Chandrasekharan & Christ 96, Gavai & Gupta, 08, P. Hegde et. al., HotQCD coll. 2012, H. Ohno et. al., 12]

• How do the low-lying eigenvalues of QCD Dirac operator look?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Overlap fermions has an index theorem even on a finite lattice → it's zero modes can track the topological constituents of QCD.
- Using them to probe the topology in gauge theories revealed onset of a dilute gas of instantons quite early $\sim 1.1 T_d!$

[Edwards, Heller & Narayanan, 98, 99, Gavai & Gupta 02]

• For QCD, though the zero and near-zero modes survive quite longer into the chiral-symmetry restored phase.

[Chandrasekharan & Christ 96, Gavai & Gupta, 08, P. Hegde et. al., HotQCD coll. 2012, H. Ohno et. al., 12]

• How do the low-lying eigenvalues of QCD Dirac operator look?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Overlap fermions has an index theorem even on a finite lattice → it's zero modes can track the topological constituents of QCD.
- Using them to probe the topology in gauge theories revealed onset of a dilute gas of instantons quite early $\sim 1.1 T_d!$

[Edwards, Heller & Narayanan, 98, 99, Gavai & Gupta 02]

• For QCD, though the zero and near-zero modes survive quite longer into the chiral-symmetry restored phase.

[Chandrasekharan & Christ 96, Gavai & Gupta, 08, P. Hegde et. al., HotQCD coll. 2012, H. Ohno et. al., 12]

• How do the low-lying eigenvalues of QCD Dirac operator look?

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- Overlap fermions has an index theorem even on a finite lattice → it's zero modes can track the topological constituents of QCD.
- Using them to probe the topology in gauge theories revealed onset of a dilute gas of instantons quite early $\sim 1.1 T_d!$

[Edwards, Heller & Narayanan, 98, 99, Gavai & Gupta 02]

• For QCD, though the zero and near-zero modes survive quite longer into the chiral-symmetry restored phase.

[Chandrasekharan & Christ 96, Gavai & Gupta, 08, P. Hegde et. al., HotQCD coll. 2012, H. Ohno et. al., 12]

• How do the low-lying eigenvalues of QCD Dirac operator look?

Microscopics of QCD!

Absence of chiral symmetry and index washes out minute structures! Recovered only in the continuum! @HotQCD, 16

Microscopics of QCD!

A small peak of near-zero modes observed above T_c

[V. Dick, F. Karsch, E. Laermann, S. Mukherjee, S.S., 16].

What do topological fluctuations tell us?

[Petreczky, Schadler, S.S., PLB 16].

- Topological susceptibility $\chi_t = T < Q^2 > /V$ measures the topological fluctuations of QCD vacuum.
- Characterizing, $\chi_t^{1/4}(T) = (c_0 + c_2 \cdot a^2) \cdot (T_c/T)^{b+..}$

 $[See also Borsanyi et. al, Nature 16, C. Bonati et. al., 16, F. Burger et. al, 18] \rightarrow \Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rangle$

Higher moments of topological fluctuations

• A better observable:

$$rac{< Q^4 > -3 < Q^2 >^2}{< Q^2 >}$$

- At T = 0 QCD consistent with χ_{PT} prediction of χ_t [Villadoro et. al, 15].
- Departure from χ_{PT} expectations but a slow rise towards DIG $\gtrsim T_c \rightarrow$ residual interactions between instantons or different topological d.o.f?

• Instantons were shown to cause color-confinement in 3D [Polyakov, 77].

- In 4D the potential is not long-ranged to ensure confinement.
- Interacting instantons explains many properties related to chiral symmetry breaking. [Shuryak, 82, Shuryak & Schaefer 96].
- Why are confinement and chiral symmetry breaking so intimately connected in QCD?
- At finite *T*, instantons characterized by the holonomy and *Q*. [Gross, Pisarski, Yaffe, 83].
- Immediately above T_c , a range of temperature where the Polyakov loop has non-trivial eigenvalues.

< ロ > < 同 > < 回 > < 回 > .

- Instantons were shown to cause color-confinement in 3D [Polyakov, 77].
- In 4D the potential is not long-ranged to ensure confinement.
- Interacting instantons explains many properties related to chiral symmetry breaking. [Shuryak, 82, Shuryak & Schaefer 96].
- Why are confinement and chiral symmetry breaking so intimately connected in QCD?
- At finite *T*, instantons characterized by the holonomy and *Q*. [Gross, Pisarski, Yaffe, 83].
- Immediately above T_c, a range of temperature where the Polyakov loop has non-trivial eigenvalues.

- Instantons were shown to cause color-confinement in 3D [Polyakov, 77].
- In 4D the potential is not long-ranged to ensure confinement.
- Interacting instantons explains many properties related to chiral symmetry breaking. [Shuryak, 82, Shuryak & Schaefer 96].
- Why are confinement and chiral symmetry breaking so intimately connected in QCD?
- At finite *T*, instantons characterized by the holonomy and *Q*. [Gross, Pisarski, Yaffe, 83].
- Immediately above T_c, a range of temperature where the Polyakov loop has non-trivial eigenvalues.

イロト イポト イヨト イヨト

- Instantons were shown to cause color-confinement in 3D [Polyakov, 77].
- In 4D the potential is not long-ranged to ensure confinement.
- Interacting instantons explains many properties related to chiral symmetry breaking. [Shuryak, 82, Shuryak & Schaefer 96].
- Why are confinement and chiral symmetry breaking so intimately connected in QCD?
- At finite *T*, instantons characterized by the holonomy and *Q*. [Gross, Pisarski, Yaffe, 83].
- Immediately above T_c , a range of temperature where the Polyakov loop has non-trivial eigenvalues.

イロト 不得 トイヨト イヨト

- Instantons were shown to cause color-confinement in 3D [Polyakov, 77].
- In 4D the potential is not long-ranged to ensure confinement.
- Interacting instantons explains many properties related to chiral symmetry breaking. [Shuryak, 82, Shuryak & Schaefer 96].
- Why are confinement and chiral symmetry breaking so intimately connected in QCD?
- At finite *T*, instantons characterized by the holonomy and *Q*. [Gross, Pisarski, Yaffe, 83].
- Immediately above *T_c*, a range of temperature where the Polyakov loop has non-trivial eigenvalues.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

- Instantons were shown to cause color-confinement in 3D [Polyakov, 77].
- In 4D the potential is not long-ranged to ensure confinement.
- Interacting instantons explains many properties related to chiral symmetry breaking. [Shuryak, 82, Shuryak & Schaefer 96].
- Why are confinement and chiral symmetry breaking so intimately connected in QCD?
- At finite *T*, instantons characterized by the holonomy and *Q*. [Gross, Pisarski, Yaffe, 83].
- Immediately above T_c , a range of temperature where the Polyakov loop has non-trivial eigenvalues.

イロト 不得 トイヨト イヨト 二日

- Instantons with a non-trivial holonomy → dyons with non-trivial color electric +magnetic charges. [Kraan & van Baal, 98, Lee & Lu, 98].
- For $SU(N_c)$ color there are N_c such dyons.
- Topological charge $= 1/N_c$ of the host-instanton.
- Dyons can directly interact with the holonomy potential. It can drive towards the confining values? [Diakonov, 2006]
- Just above T_c there is a region where the holonomy is still non-trivial!
- Do dyons really exist ? Yes several evidences!

(人間) (人) (人) (人) (人) (人)

- Instantons with a non-trivial holonomy → dyons with non-trivial color electric +magnetic charges. [Kraan & van Baal, 98, Lee & Lu, 98].
- For $SU(N_c)$ color there are N_c such dyons.
- Topological charge $= 1/N_c$ of the host-instanton.
- Dyons can directly interact with the holonomy potential. It can drive towards the confining values? [Diakonov, 2006]
- Just above T_c there is a region where the holonomy is still non-trivial!
- Do dyons really exist ? Yes several evidences!

(人間) (人) (人) (人) (人) (人)

- Instantons with a non-trivial holonomy → dyons with non-trivial color electric +magnetic charges. [Kraan & van Baal, 98, Lee & Lu, 98].
- For $SU(N_c)$ color there are N_c such dyons.
- Topological charge $= 1/N_c$ of the host-instanton.
- Dyons can directly interact with the holonomy potential. It can drive towards the confining values? [Diakonov, 2006]
- Just above T_c there is a region where the holonomy is still non-trivial!
- Do dyons really exist ? Yes several evidences!

- Instantons with a non-trivial holonomy → dyons with non-trivial color electric +magnetic charges. [Kraan & van Baal, 98, Lee & Lu, 98].
- For $SU(N_c)$ color there are N_c such dyons.
- Topological charge $= 1/N_c$ of the host-instanton.
- Dyons can directly interact with the holonomy potential. It can drive towards the confining values? [Diakonov, 2006]
- Just above T_c there is a region where the holonomy is still non-trivial!
- Do dyons really exist ? Yes several evidences!

・ 同 ト ・ ヨ ト ・ ヨ ト

- Instantons with a non-trivial holonomy → dyons with non-trivial color electric +magnetic charges. [Kraan & van Baal, 98, Lee & Lu, 98].
- For $SU(N_c)$ color there are N_c such dyons.
- Topological charge $= 1/N_c$ of the host-instanton.
- Dyons can directly interact with the holonomy potential. It can drive towards the confining values? [Diakonov, 2006]
- Just above T_c there is a region where the holonomy is still non-trivial!
- Do dyons really exist ? Yes several evidences!

イロト イポト イヨト イヨト

- Instantons with a non-trivial holonomy → dyons with non-trivial color electric +magnetic charges. [Kraan & van Baal, 98, Lee & Lu, 98].
- For $SU(N_c)$ color there are N_c such dyons.
- Topological charge $= 1/N_c$ of the host-instanton.
- Dyons can directly interact with the holonomy potential. It can drive towards the confining values? [Diakonov, 2006]
- Just above T_c there is a region where the holonomy is still non-trivial!
- Do dyons really exist ? Yes several evidences!

イロン 不同 とくほう イロン

How robust is the identification of the dyons

- Can we identify different species of dyons in the hot QCD medium.
- How do different species of dyons interact?
- Can there be a semi-classical description of dyons?

(4回) (4日) (4日)

- How robust is the identification of the dyons
- Can we identify different species of dyons in the hot QCD medium.
- How do different species of dyons interact?
- Can there be a semi-classical description of dyons?

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- How robust is the identification of the dyons
- Can we identify different species of dyons in the hot QCD medium.
- How do different species of dyons interact?
- Can there be a semi-classical description of dyons?

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- How robust is the identification of the dyons
- Can we identify different species of dyons in the hot QCD medium.
- How do different species of dyons interact?
- Can there be a semi-classical description of dyons?

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Dyon-zero modes in SU(3)

- Holonomy $L = \frac{1}{3} Tre^{idiag(\mu_1,\mu_2,\mu_3)} \rightarrow the$ *ith* $dyon action is characterized by <math>\mu_{i+1} \mu_i$.
- The zero mode of Dirac operator with b.c ψ(t + β) = e^{iφ}ψ(t) have a normalizable solution for ith-dyon background if φ ε [μ_{i+1} − μ_i]

Dyon zero modes in SU(3)

The density at any spacetime point x is:

$$\rho(x) = -\frac{1}{4\pi^2} \partial_{\mu}^2 f_x(\phi, \phi) ,$$

where

$$\left[\left(\frac{1}{i}\partial_{\phi}-\tau\right)^{2}+r^{2}(x,\phi)+\sum_{m=1}^{3}\delta(\phi-\mu_{m})\frac{|x_{m}-x_{m+1}|}{2\pi}\right]f_{x}(\phi,\phi')=\delta(\phi-\phi')$$

- distances between center of the *m*-th and (m + 1)-th dyon given as $x_m x_{m+1}$ where m = 1, 2, 3.
- r²(x, φ) = r²_m(x), φ ∈ [μ_m, μ_{m+1}] is the distance between the observation point x and the center of the m-th dyon.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Snapshot of QCD vacuum at $\sim 1.1 T_c$

(人間) (人) (人) (人) (人) (人)

Snapshot of QCD vacuum at $\sim 1.1 T_c$

The fermion zero modes insensitive to temporal periodicity phase \rightarrow Dyon or caloron? R. Larsen, S.S., E. Shuryak, Phys. Lett. B. 794, 2019, and in prep.

Sayantan Sharma QCD in the non-perturbative regime, TIFR Slide 13 of 18

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Comparing with the semiclassical theory

- Analytic solutions of the dyons are known [Kraan & van Baal, Lee and Lu, 98].
- Choose an initial value of Polyakov loop and locate diff. dyons at the positions of the lattice zero modes → Fit it to analytic profiles assuming weakly interacting ensemble R. Larsen, S.S., E. Shuryak, Phys. Lett. B., and in prep.

What do the near-zero modes tell us?

• *L*-dyon-pairs are rarer and only those which are near-by appear at high *T* as expected.

What do the near-zero modes tell us?

• M-dyons appear for all separations!

What do the near-zero modes tell us?

How robust are the zero-modes

Characterizing the dyons

Sayantan Sharma QCD in the non-perturbative regime, TIFR Slide 17 of 18

- We have shown that the use of chiral fermions allow us to unambiguously distinguish between a dyon and a caloron.
- We understand their interactions and can reproduce the holonomy.
- For temperatures just above the crossover transition we find a good agreement with the semi-classical theory of dyons within 10 20%.
- Need to develop techniques to measure the densities and thermal distributions of different dyon species.
- Understand how the dyon pictures goes over to high-T 3D confining theories

(4 同) (4 日) (4 日)

- We have shown that the use of chiral fermions allow us to unambiguously distinguish between a dyon and a caloron.
- We understand their interactions and can reproduce the holonomy.
- For temperatures just above the crossover transition we find a good agreement with the semi-classical theory of dyons within 10 20%.
- Need to develop techniques to measure the densities and thermal distributions of different dyon species.
- Understand how the dyon pictures goes over to high-T 3D confining theories

(人間) (人) (人) (人) (人) (人)

- We have shown that the use of chiral fermions allow us to unambiguously distinguish between a dyon and a caloron.
- We understand their interactions and can reproduce the holonomy.
- For temperatures just above the crossover transition we find a good agreement with the semi-classical theory of dyons within 10 20%.
- Need to develop techniques to measure the densities and thermal distributions of different dyon species.
- Understand how the dyon pictures goes over to high-T 3D confining theories

- We have shown that the use of chiral fermions allow us to unambiguously distinguish between a dyon and a caloron.
- We understand their interactions and can reproduce the holonomy.
- For temperatures just above the crossover transition we find a good agreement with the semi-classical theory of dyons within 10 20%.
- Need to develop techniques to measure the densities and thermal distributions of different dyon species.
- Understand how the dyon pictures goes over to high-T 3D confining theories

イロト イポト イヨト イヨト

- We have shown that the use of chiral fermions allow us to unambiguously distinguish between a dyon and a caloron.
- We understand their interactions and can reproduce the holonomy.
- For temperatures just above the crossover transition we find a good agreement with the semi-classical theory of dyons within 10 20%.
- Need to develop techniques to measure the densities and thermal distributions of different dyon species.
- Understand how the dyon pictures goes over to high-T 3D confining theories

・ 戸 ・ ・ ヨ ・ ・ ヨ ・