# New Physics at the High Luminosity LHC with ATLAS

R Rosten on Behalf of the ATLAS Collaboration



### LHC to HL-LHC



### HL-LHC <u>Nominal</u> $L = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ $\langle \mu \rangle = 140$ $\int L = 3000 \text{ fb}^{-1}$ **Ultimate** $L = 7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ $\langle \mu \rangle = 200$

### LHC to HL-LHC





#### HL-LHC

Higher pileup

Higher trigger rates

**Higher radiation doses** 

Higher levels of beam induced background

Mew Physics





Increase radiation hardness, reduce material budget

### Calorimeter & Muon Upgrades

Replacement of front & back end electronics and power supplies

EM calorimeter readout upgrade will allow higher granularity at earliest trigger level

Hadronic calorimeter to provide full layer information at earliest trigger level

**Replacement of readout** electronics Additional trigger layer for inner barrel layer Upgrade of transition region chambers  $\rightarrow$ inclusion of precision chambers for L0 trigger Possible addition of highη tagger

Theme: Improve triggering!

### Triggering at the HL-LHC



### High-Granularity Timing Detector

- Use timing in the forward regions to improve vertex reconstruction and mitigate in-time pileup
- The HGTD is a Si detector hopefully to be placed between the end of the tracker and the electromagnetic calorimeter endcap
  - 4 Si layers, 2.4 < |n| < ~4.2</li>
  - 1.3 x 1.3 mm<sup>2</sup> granularity
  - 30-50 ps timing resolution (expected spread in collision is ~180 ps)





Question to Ask Regarding Physics and the Upgrades

- How do we benefit from the upgraded geometry?
- Are there previously suppressed (e.g. machine) backgrounds that could become significant?
- Are there techniques (e.g. machine learning) which can improve selection efficiency?
- Can we aid in the development of new triggers to recover lost phase space from the LHC?

### Direct stau production ATL-PHYS-PUB-2016-021

- $ilde{ au}$  searches of interest in SUSY scenarios with large aneta
  - Restrictions set by the relic density favor a light  $\tilde{\tau}$  with a small mass splitting
- Current 95% CL limits on  $m_{ ilde{ au}}$  set at 109 GeV for a massless LSP
- Sensitive to MET reconstruction, pileup jet identification
- Assuming systematic uncertainty ~30%,  $5\sigma$  discovery sensitivity p for massless  $\tilde{\chi}_1^0$  up to 500 GeV in  $\tilde{\tau}$  mass, 95%CL exclusion up to 700 GeV



### ATL-PHYS-PUB-2015-032 Direct chargino and neutralino production

- Final states with  $\tilde{\chi}^0$  and  $\tilde{\chi}^{\pm}$  LSPs comprise a large fraction of R-parity conserving parameter space
- Current 95% CL exclusion limits ~250 GeV for massless LSP
- Selection criteria efficiency shows a dependence on pileup, degrades limits somewhat at low masses

Major increase in exclusion possible for HL-LHC

 $p \qquad \tilde{\chi}_{1}^{\pm} \qquad W \qquad \tilde{\chi}_{1}^{\nu} \qquad \tilde{\chi}_{2}^{\nu} \qquad \tilde{\chi}_{2}^{\nu$ 



### Direct stop pair production

- Searches for  $\tilde{t}$  production challenging in compressed mass regime due to similarity in kinematics to SM  $t\bar{t}$ production
- Previous exclusion from dilepton (initial state radiation based) selections set limits on the stop mass at 191 (230-380) GeV
- HL-LHC may improve limits by factor of 2 or more in dileptonic final state





ATL-PHYS-PUB-2016-022

### Dark Matter at HL-LHC

- Monojets: ATL-PHYS-PUB-2014-007
  - EX: Pair of WIMP DM particles recoil off initial state radiation
  - limited by systematics, increase in limits/discovery potential from 300 → 3000 fb<sup>-1</sup> to gain most from suppressing systematics
- Disappearing tracks search: 1703.09675
  - charged long-lived particle decays in tracker to light charged SM particle and LSP)
  - Tracker upgrade allows for improved momentum resolution + maintaining background rejection
- Dark matter + ttbar: arXiv:1611.09841
  - Considered signature: 2 leptons, 2 b-jets, MET
  - Large increase in sensitivity, strong dependence on background systematics







# Top Quark and FCNC ATL-PHYS-PUB-2016-019

- Decays forbidden at tree level in SM but present in various BSM models  $\rightarrow$  natural probe for new physics
- Search for  $t \to Zq$  and  $t \to Hq$  in  $t\bar{t}$  events and take advantage of HL-LHC statistics
- Analysis sensitive to fake b-jets, considered 2 and 3 b-jet events only
- Expect order of magnitude improvement on Run-I limits



$$\begin{array}{l} \boldsymbol{t} \to \boldsymbol{Z} \boldsymbol{q} \to \ell \ell \boldsymbol{q} \\ \boldsymbol{t} \to W \boldsymbol{b} \to \ell \boldsymbol{\nu} \boldsymbol{b} \end{array}$$

Uncertainties dominated by relative uncertainty in ttbar and Z+jets cross-sections

#### or

 $\begin{array}{l} \boldsymbol{t} \to \boldsymbol{H} \boldsymbol{q} \to b \overline{b} q \\ t \to W b \to \ell \nu b \end{array}$ 

Uncertainties dominated by light-jet fake rate and normalization of ttbar background

$$\mathcal{B}(t \to Zq) < (8.3 - 41) * 10^{-5}$$
  
 $\mathcal{B}(t \to Hq) < (1.1 - 2.4) * 10^{-5}$ 

# Higgs Searches

- Mono-Higgs: ATL-PHYS-PUB-2015-024
  - Signature: DM (MET) + Higgs (4 leptons)
  - Large dataset of HL-LHC should allow reduction of some systematics
  - In general, 4-lepton search useful for constraining Higgs width
- More on Couplings:
  - Extensions to Higgs models will modify couplings to SM particles
  - Ex: Minimal Composite Higgs, 2HDM, other DM

ATL-PHYS-PUB-2014-017





κ<sub>v</sub>

### Summary

- HL-LHC promises enormous amounts of data... and new challenges
- ATLAS systems to be upgraded to maintain and improve performance
- Preliminary studies suggest substantial increases in sensitivity
- Ongoing studies need to be done incorporating updated geometry and software capabilities
- Shouldn't abandon improvements in search strategy!

### Backup Slides

Status of ATLAS Upgrade Technical Design Reports

- Muon NSW: Approved, components already under production (Phase-I upgrade)
- ITK TDR: Approved in May
- Muon TDR: Final version with LHCC
- LAr & Tile TDR: Proceeded through LHCC review, revisions ongoing
- TDAQ: Expect submission end of this week
- HGTD: Expression of Interest submitted to LHCC

### Muon New Small Wheel (NSW)

- Phase-I Upgrade, under production with first wedge to be assembled early 2018
- Replacement of inner endcap wheel with new Small-strip Thin Gap Chambers (sTGC) and MICRO MEsh GAseous Structures chambers (micromegas) based detector
- Reduce fake-rate of hardware triggering and improve tracking



### Notes: Direct stau Production

- Signature: 2 tau jets + large MET
- Backgrounds: W+jets, ttbar
- Trigger: tau trigger
- Upgraded ATLAS geometry not simulated – use generator level information with parameterization of ATLAS (including resolution and reconstruction efficiencies) response after upgrade – reoptimized selections

| SR Definition                                                    |  |  |  |  |
|------------------------------------------------------------------|--|--|--|--|
| $\geq 2 \text{ OS taus}$                                         |  |  |  |  |
| loose jet-veto                                                   |  |  |  |  |
| Z-veto                                                           |  |  |  |  |
| $\Delta R(\tau 1,\tau 2) < 3.5$                                  |  |  |  |  |
| $E_{\rm T}^{\rm miss} > 280 { m GeV}$                            |  |  |  |  |
| $m_{\rm T2} > 40 { m GeV}$                                       |  |  |  |  |
| $m_{\mathrm{T}\tau 1} + m_{\mathrm{T}\tau 2} > 480 \mathrm{GeV}$ |  |  |  |  |



### Notes: Direct chargino/neutralino production

- Signature: Isolated lepton + pair of b-jets
- Backgrounds: ttbar, single top, associated production of ttbar + vector boson
- Trigger: Not included (lepton trigger may benefit from upgrades)
- Upgraded ATLAS geometry not simulated – use generator level information with parameterization of ATLAS (including resolution and reconstruction efficiencies) response after upgrade – reoptimized selections

| Selection                                                          | SRA                  | SRB   | SRC   | SRD   |
|--------------------------------------------------------------------|----------------------|-------|-------|-------|
| # of leptons (e, $\mu$ )                                           | 1                    |       |       |       |
| # b-tagged jets                                                    | 2                    |       |       |       |
| $m_{bb}$ [GeV]                                                     | $105 < m_{bb} < 135$ |       |       |       |
| # jets                                                             | 2 or 3               |       |       |       |
| $m_{\rm CT}  [{\rm GeV}]$                                          | > 200                | > 200 | > 300 | > 300 |
| $m_{\rm T}  [{\rm GeV}]$                                           | > 200                | > 250 | > 200 | > 250 |
| $E_{\rm T}^{\rm miss}$ [GeV]                                       | > 300                | > 350 | > 400 | > 450 |
| $\langle \mu \rangle = 60, 300  \text{fb}^{-1} \text{ scenario}$   | yes                  | yes   | _     | _     |
| $\langle \mu \rangle = 140, 3000  \text{fb}^{-1} \text{ scenario}$ | -                    | -     | yes   | yes   |



### Notes: Direct stop production

- Signature: 2 leptons, MET, ISR jet
- Backgrounds: ttbar, ttbar + Z (Z->neutrinos)
- Trigger: lepton trigger, p<sub>T</sub> > 25 GeV
- Upgraded ATLAS geometry not simulated – use generator level information with parameterization of ATLAS (including resolution and reconstruction efficiencies) response after upgrade – reoptimized selections

| $81.2 < m_{\ell\ell} < 101.2$ |
|-------------------------------|
| > 0.4                         |
| > 2                           |
| > 6                           |
| > 350                         |
| > 300                         |
| > 100                         |
|                               |



SR

## Long-lived particles

- Long-lived particles are present in a variety of models
  - Arise from approximate symmetries, suppressed phase space, small couplings, off-shell decays...
- Searches are heavily geometry dependent
- Searches may include dedicated triggers or object reconstructed
  - Projections for HL-LHC non-trivial



Figure by Heather Russell

### Higgs Couplings



#### ATLAS Simulation Preliminary

√s = 14 TeV: ∫Ldt=300 fb<sup>-1</sup> ; ∫Ldt=3000 fb<sup>-1</sup>

