Search for Supersymmetry in the single-lepton final state with the CMS experiment

Daniel Spitzbart (HEPHY) on behalf of the CMS collaboration

Introduction

- Latest results on gluino pair production in single lepton final states
- For top squark pair production see Tom's (Tue) and Navid's (Thu) talks

Setting the stage

- Best exclusion limits for gluino pair production from Run I (8 TeV) came from single lepton analysis
- During Run 2 of the LHC (13 TeV) several public results with different datasets

Search strategies

- Two separate analysis strategies:
 - Angular information of W boson candidate and lepton from its decay $\Delta \Phi$
 - Sum of masses of large-radius jets M_J
- Signals should become visible in the tails of the distributions M_J or $\Delta\Phi$
- Backgrounds are estimated using control regions in data
- Main background from tt+jets events with
 - I leptonic top decay
 - 2 leptonic top decays and one lost lepton: additional transverse momentum imbalance

$\Delta \Phi$ analysis

- ΔΦ distribution steeply falling for SM backgrounds : hypothetical signal events become visible
- $\ensuremath{\mathsf{p}_\mathsf{T}}^\mathsf{miss}$ direction randomized due to neutralino resulting in flat $\Delta\Phi$ distribution for signals
- Further categorize in L_T (lepton p_T + p_T^{miss}), hadronic activity H_T (sum of jet p_T), N_{jet} and N_b

lepton

reconstructed W

Background estimation multi-b

- Measure ratio $R_{CS} = N(high \Delta \Phi)/N(low \Delta \Phi)$ in low N_{jet} region, apply R_{CS} to corrected count in high N_{jet} , low $\Delta \Phi$ region
- Separate estimation of residual QCD multijet background
- Residual dependence of R_{CS} on N_{jet} corrected with ${\boldsymbol \kappa}$ factor from simulation

 $N_{\text{pred}}(\text{SR}) = R_{\text{CS}}\kappa \left[N_{\text{data}}^{\text{high}-n_{\text{jet}}}(\text{CR}) - N_{\text{QCD pred}}^{\text{high}-n_{\text{jet}}}(\text{CR}) \right]$

Background estimation Ob

- For chargino mediated gluino decay no b-tagged jets expected:
 - Background is composition of W+jets and top quark pairs
- Estimate both backgrounds in separate control regions, measuring independent R_{CS} values
- Composition of backgrounds measured in low $\Delta\Phi$ region, using fit of simulated b-jet multiplicity templates to data

Results

- Good agreement between SM prediction and observation in both channels: no sign of SUSY
- Profile likelihood method used to set limits on gluino pair production at the 95% C.L.

M_J analysis

- Sum of masses of large-radius jets M_J and m_T used to categorize events
- Large radius jets are clustered from "standard" small-R jets including jets associated to isolated leptons
 - from R=0.4 to R=1.4 using anti- k_T algorithm
- Potential signals populate regions with high M_{J} and $m_{\rm T}$
- For ttbar background M_J has a rough endpoint at 2 m_t
 - ISR contribution enhances M_J tail
- Further categorize in N_{jet} , N_b and p_T^{miss}
- Data-driven methods used to
 - estimate SM backgrounds

Background prediction

- tt+jets background split into 1 and 21 component by $m_{\rm T}$ threshold
- Estimate background using control regions R1, R2, R3
- κ (close to unity) corrects for residual m_T -M_J correlation

M_J distributions

- Shape comparison of M_J distribution for high/low m_T in different $p_T{}^{miss}$ bins
- Good shape agreement, hypothetical signal observable in tails of the distribution

Results

- Good agreement of predicted SM background and observation
- Very similar exclusion limits for two and three body decay models show independence of top squark mass
- For low neutralino masses sensitivity drops for on shell top squark production

Results cont'd

- CMS exploits two separate analysis strategies in single lepton final state yielding compatible results: No sign of SUSY
- Outstanding LHC performance so far: Looking forward to results with ~150/fb at the end of Run 2 that ends in 2018

13

BACKUP

Event selection

- I e/ μ with p_T > 25 GeV
- Events with additional lepton and isolated track vetoed
- Njet \geq 6/5 (multi-b/0b)
- $H_T > 500 \text{ GeV}$
- $L_T > 250 \text{ GeV}$

ΔΦ analysis: <u>CMS-SUS-16-042</u> submitted to PLB

- I e/ μ with p_T > 20 GeV
- Events with additional lepton and isolated track vetoed
- Njet ≥ 6
- $N_b \ge 1$
- $S_T > 500 \text{ GeV}$

 $p_T^{miss} > 200 \text{ GeV}$

Systematic uncertainties $\Delta \varphi$

Source	Uncertainty for multi-b [%]	Uncertainty for 0-b [%]
Dilepton control sample	0.9–7.0	0.3–18
JES	0.3–18	0.7–26
Tagging of b jets	0.1–0.9	0.1–2.5
Mistagging of light flavor jets	0.1–2.2	0.3–0.8
$\sigma(W+jets)$	0.3–9.3	0.3–10
$\sigma(t\bar{t})$	0.1–7.5	0.7–13
$\sigma(t\bar{t}V)$	0.2–20	0.1–3.8
W polarization	0.1–3.3	0.7–14
ISR reweighting $(t\bar{t})$	0.5–7.0	0.2–11
Pileup	0.4–7.1	0.1–20
Statistical uncertainty in MC events	5–30	5–36

Source	Uncertainty [%]
Trigger	2
Pileup	10
Lepton efficiency	2
Isolated track veto	4
Luminosity	2.5
ISR	2–25
Tagging of b jets	1–6
Mistagging of light flavor jets	1–4
JES	3–40
Factorization/renormalization scale	1–3
$p_{\mathrm{T}}^{\mathrm{miss}}$	2–20

