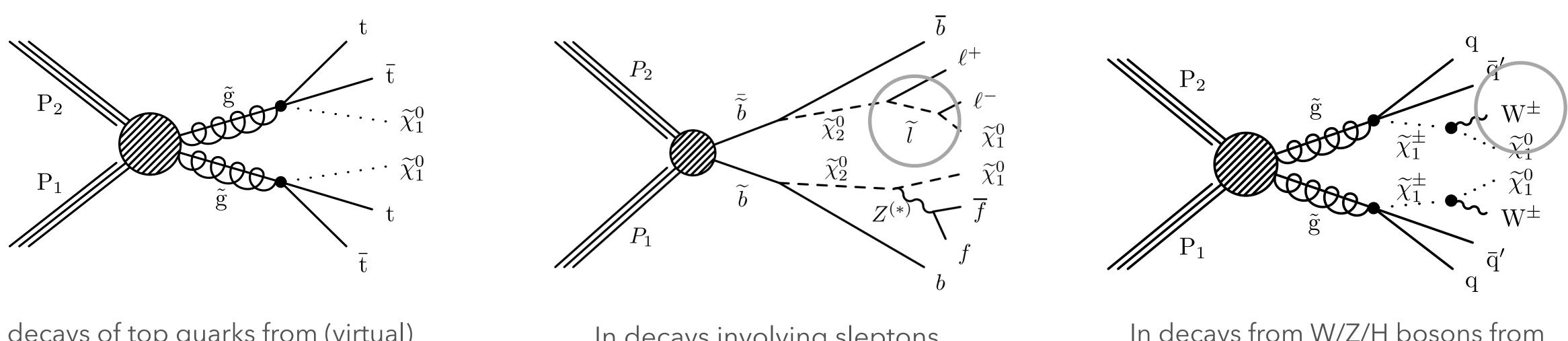


Searches for strong production of SUSY in final states with two or more leptons at CMS

Leonora Vesterbacka on behalf of the CMS collaboration


ETH Zürich

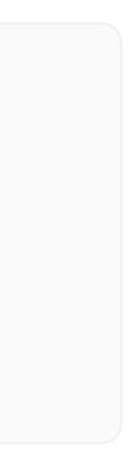
SUSY17 Mumbai

ETHzürich

Leptons appear naturally in decay chains of strongly produced SUSY

In decays of top quarks from (virtual) top squark decays.

Leptonic final states of interest:


- \bigcirc Light stops in "natural" SUSY models + flavor conservation \rightarrow top quarks \rightarrow leptons
- Charged leptons are measured with large efficiency and precision in CMS
- Main background processes well understood and can often be estimated from data

Searching for strong SUSY in leptonic final states

In decays involving sleptons

In decays from W/Z/H bosons from chargino/neutralino decays

ETHzürich Covered searches for strong SUSY in leptonic final states

Dilepton searches (OS, LS):

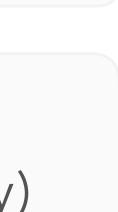
- leptons, jets, and missing transverse momentum in pp collisions at \sqrt{s} = 13 TeV arXiv:1709.08908
- sign, missing transverse momentum, and jets in proton-proton collisions at \sqrt{s} = 13 TeV. arXiv:1704.07323

Multilepton search:

proton collision data at \sqrt{s} = 13 TeV

⊘ arXiv:1710.09154

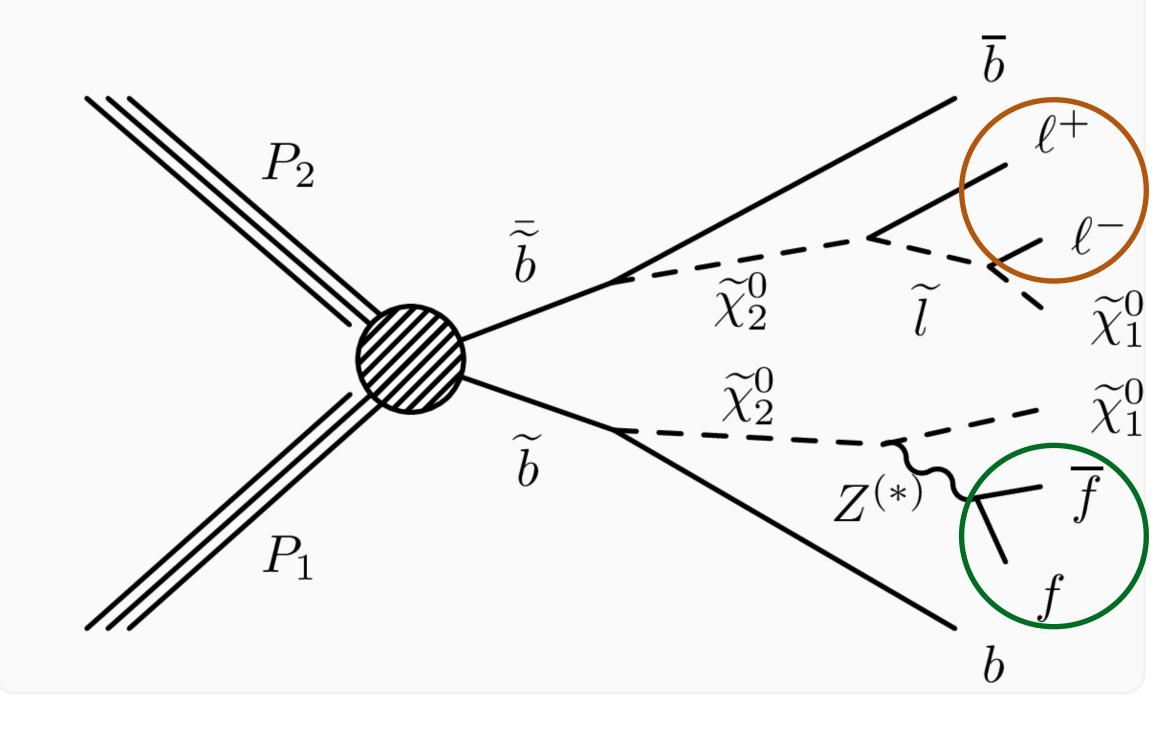
The electroweak SUSY searches with CMS covered by Laurent Thomas (Thursday) The direct slepton and stau production searches with CMS covered by Illia Babounikau (Thursday)

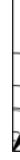

CMS-SUS-16-034: Search for new phenomena in final states with two opposite-sign, same-flavor

CMS-SUS-16-035: Search for physics beyond the standard model in events with two leptons of same

CMS-SUS-16-041: Search for new physics in events with multileptons and jets in 35.9 fb⁻¹ of proton-

Searches for SUSY with opposite sign dileptons:

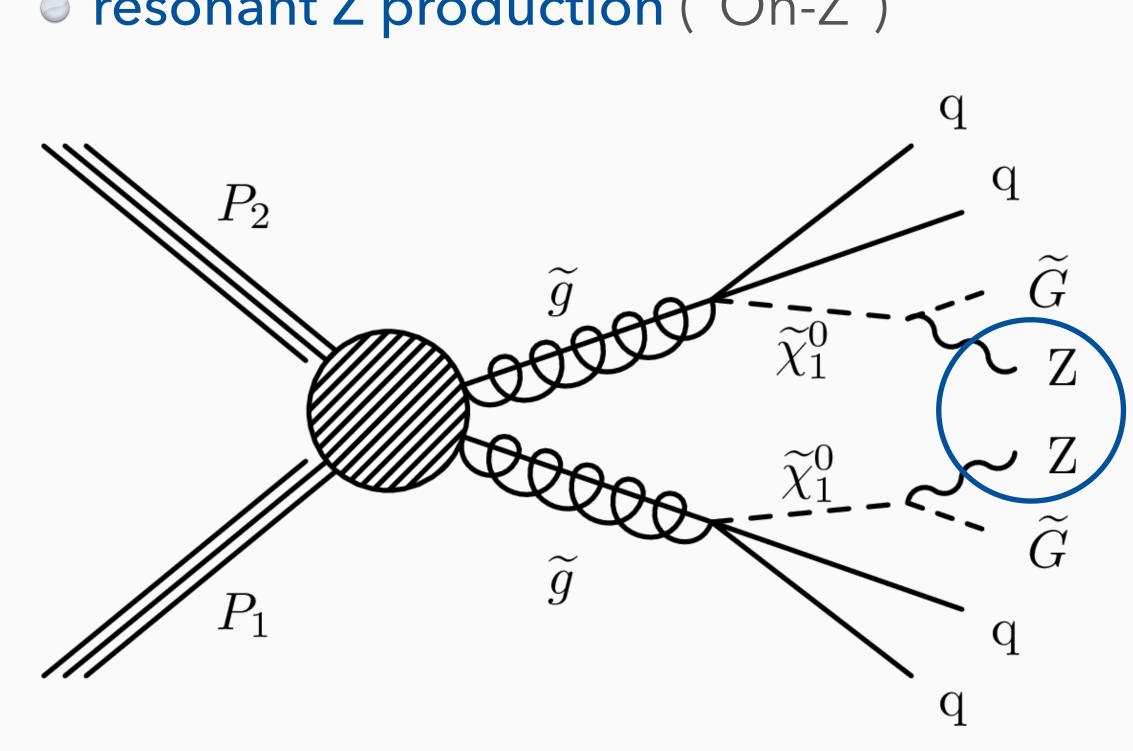



- Search for new phenomena in final states with two opposite-sign, same-flavor leptons, jets, and missing transverse momentum in pp collisions at \sqrt{s} = 13 TeV
 - CMS-SUS-16-034
 - arXiv:1709.08908

Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017 ETHzürich SUSY with opposite sign dileptons

Sbottom induced:

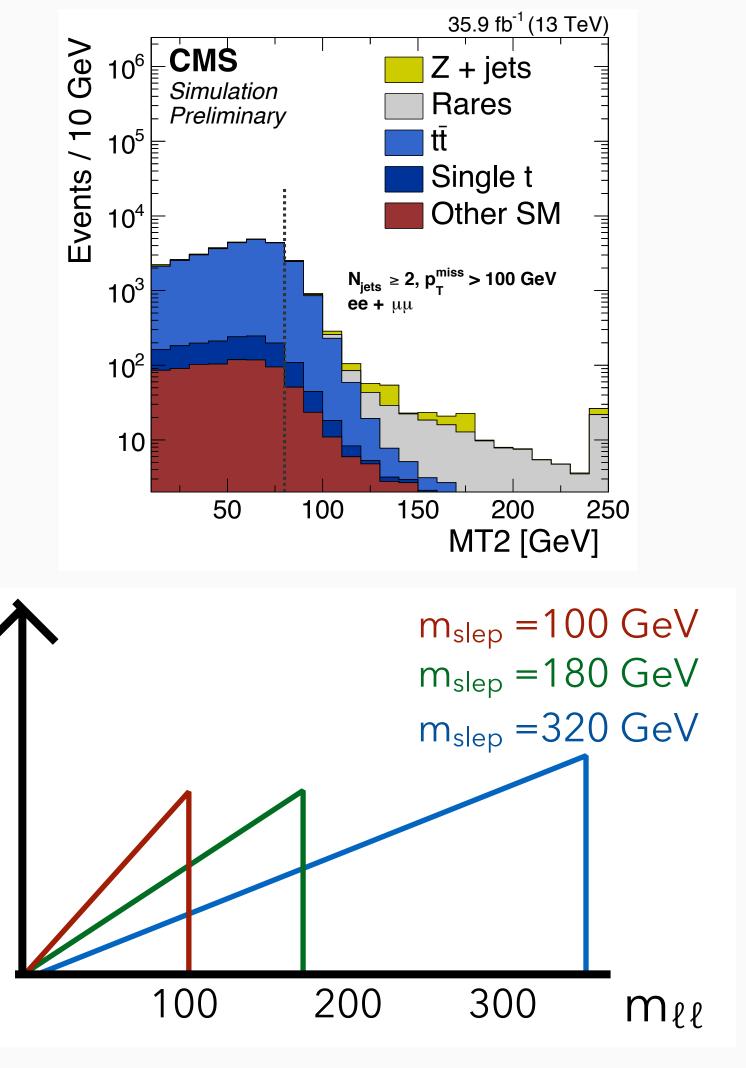
- cascade decay resulting in kinematic edge in invariant mass ("Edge")
- or off-shell Z boson



Gluino induced:

probes gauge mediated supersymmetry breaking (GMSB)

resonant Z production ("On-Z")



Search strategy: OSSF

Baseline selection

- 2 opposite sign leptons, $p_T^{miss} > 100 \text{ GeV}$, ≥ 2 jets
 M_{T2} ≥ 80 GeV
- Resonant contribution on the Z peak ("On-Z"):
- ${\ensuremath{\circ}}$ binning in b-jet and jet multiplicity, H_T and p_T^{miss}
- Edge like feature in $m_{\ell\ell}$ outside the Z window ("Edge"):
- kinematic fit for edge shaped feature in full mass range
- counting experiment binned in m_{ll} and a multivariate discriminant to classify events as tī or non-tī like
 tī likelihood

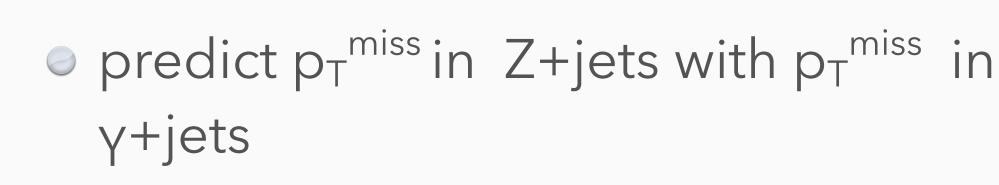
ETHzürich

Search strategy: OSSF

300

Flavor symmetric (data driven) (tt):

- main background in Edge search
- relies on the lepton universality of W decays
 - #same flavor ≃#opposite flavor lepton pairs
- \bigcirc ee and $\mu\mu$ signal estimated from e μ control sample

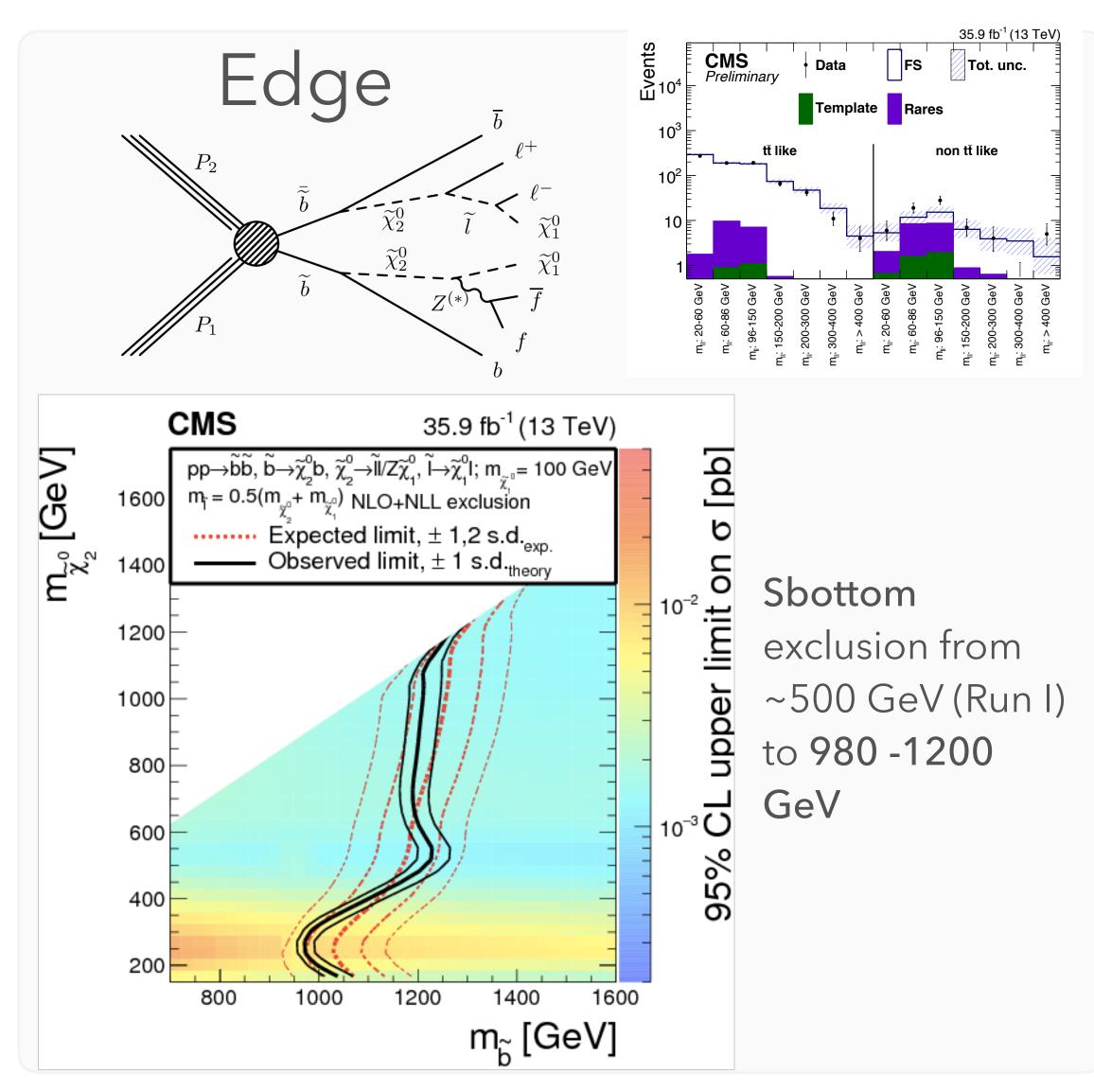


Z+jets (data driven):

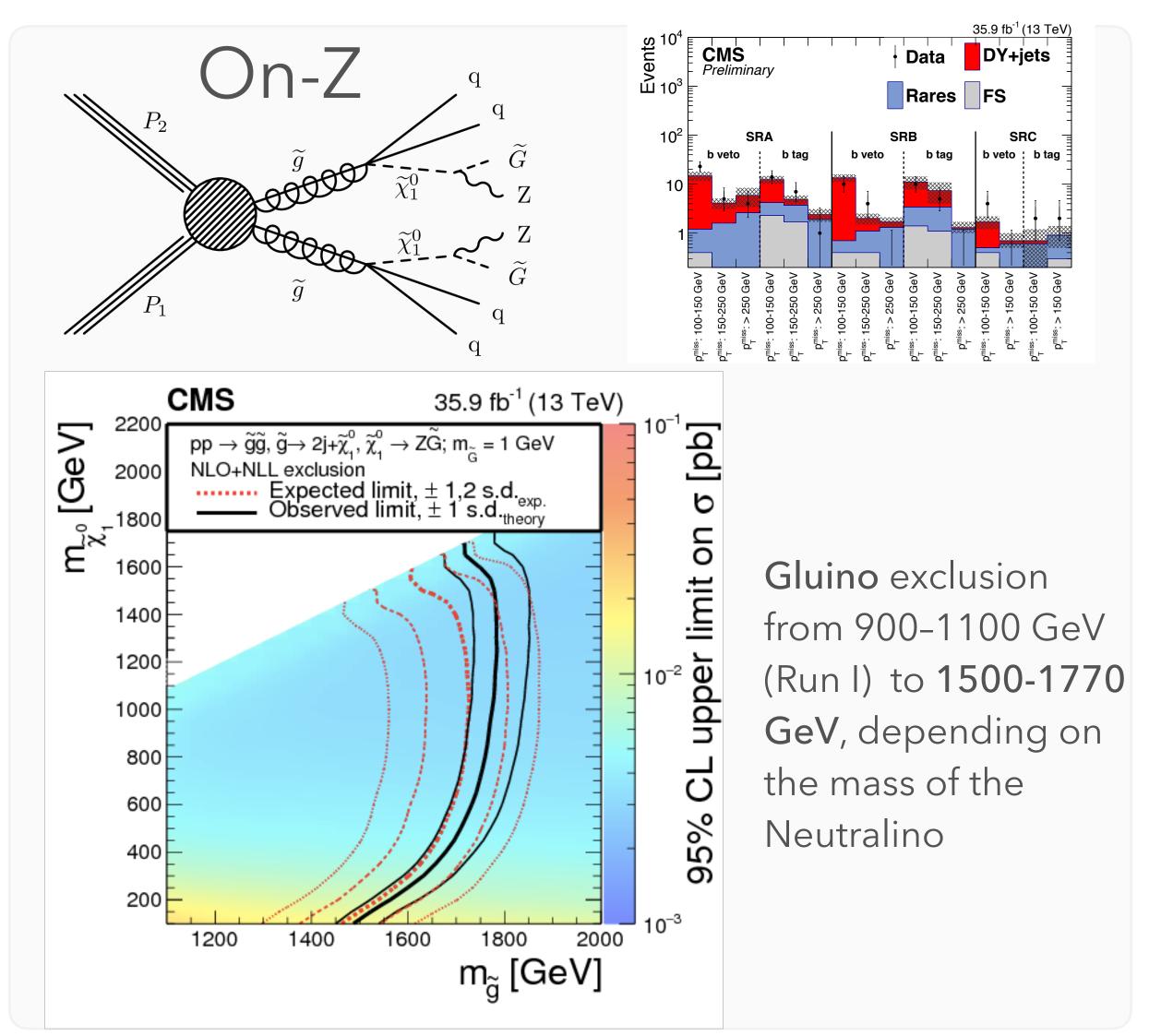
mismeasurements

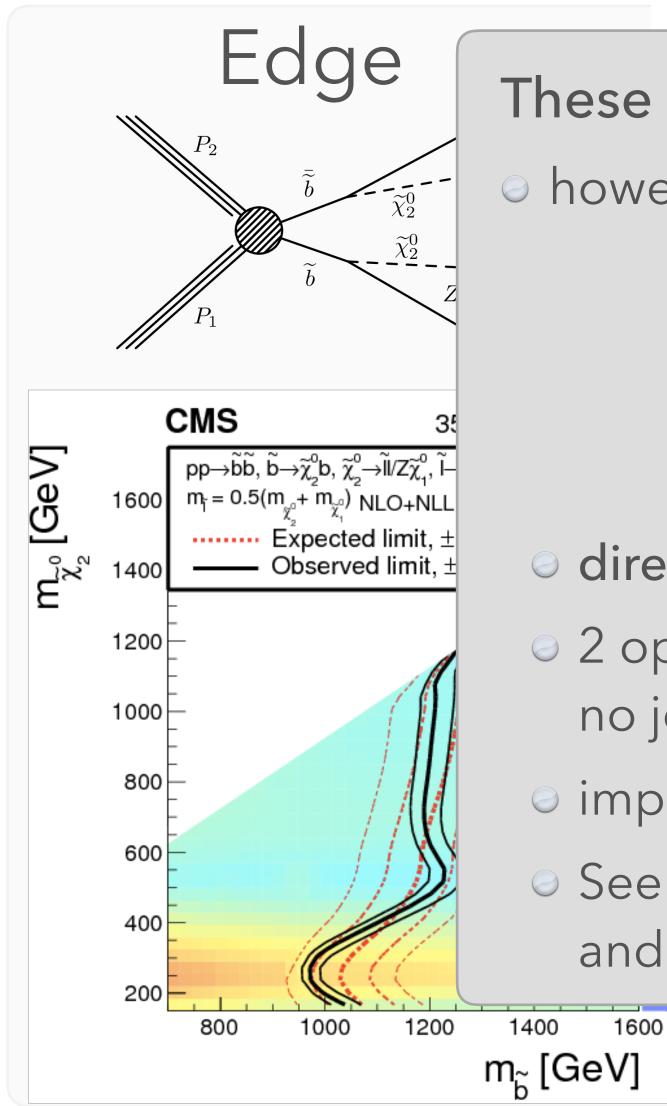
main background in On-Z search

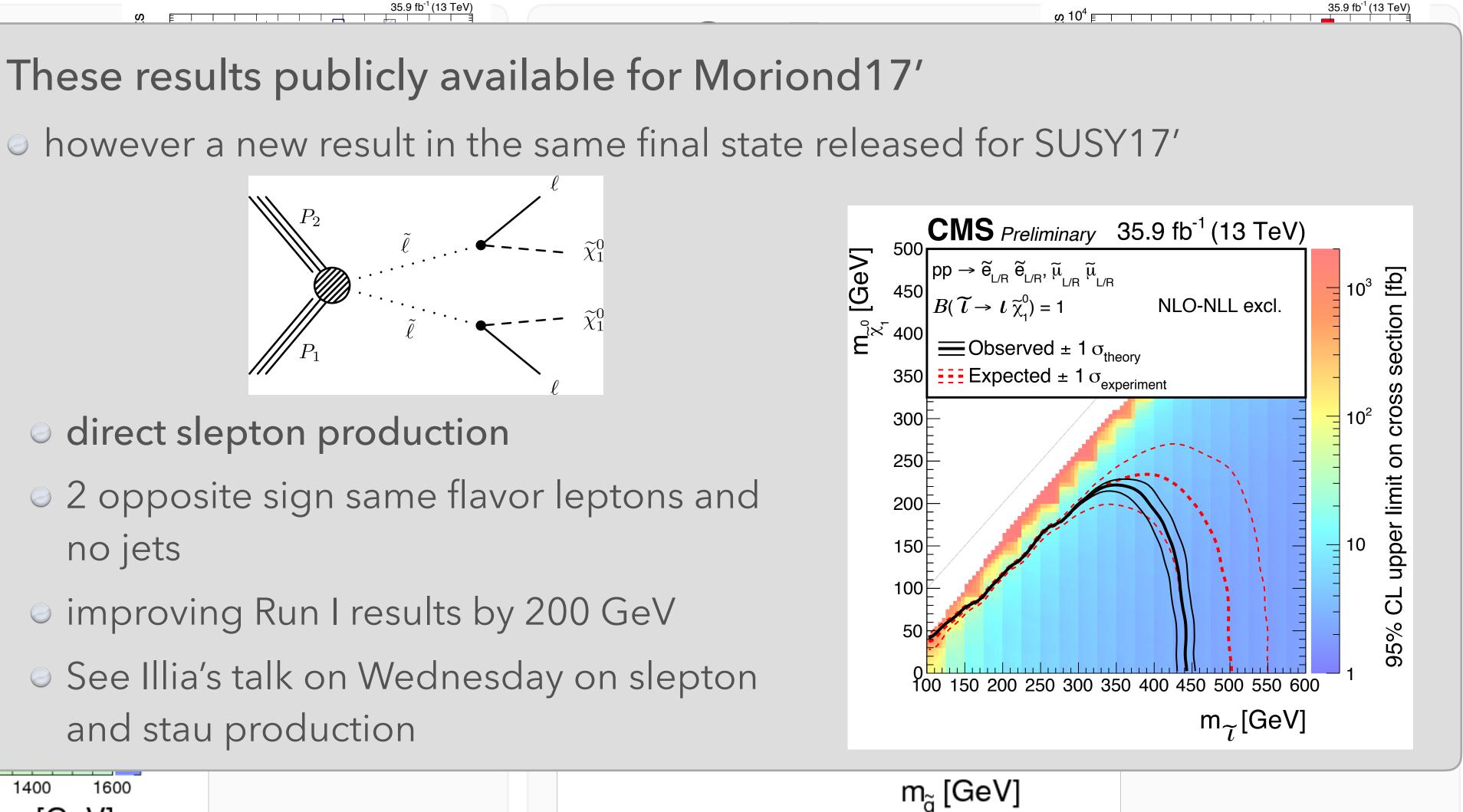
 $= p_T^{miss}$ in $Z \rightarrow \ell \ell$ is mainly from jet



- Remaining backgrounds (MC):
- \bigcirc such as WZ→3ℓ, ZZ→4ℓ, tīZ
- on normalization checked in 31 and 41 control regions
 - Translation factor of 1.31±0.29 for ttZ




Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017 ETHzürich Results and interpretation: OSSF

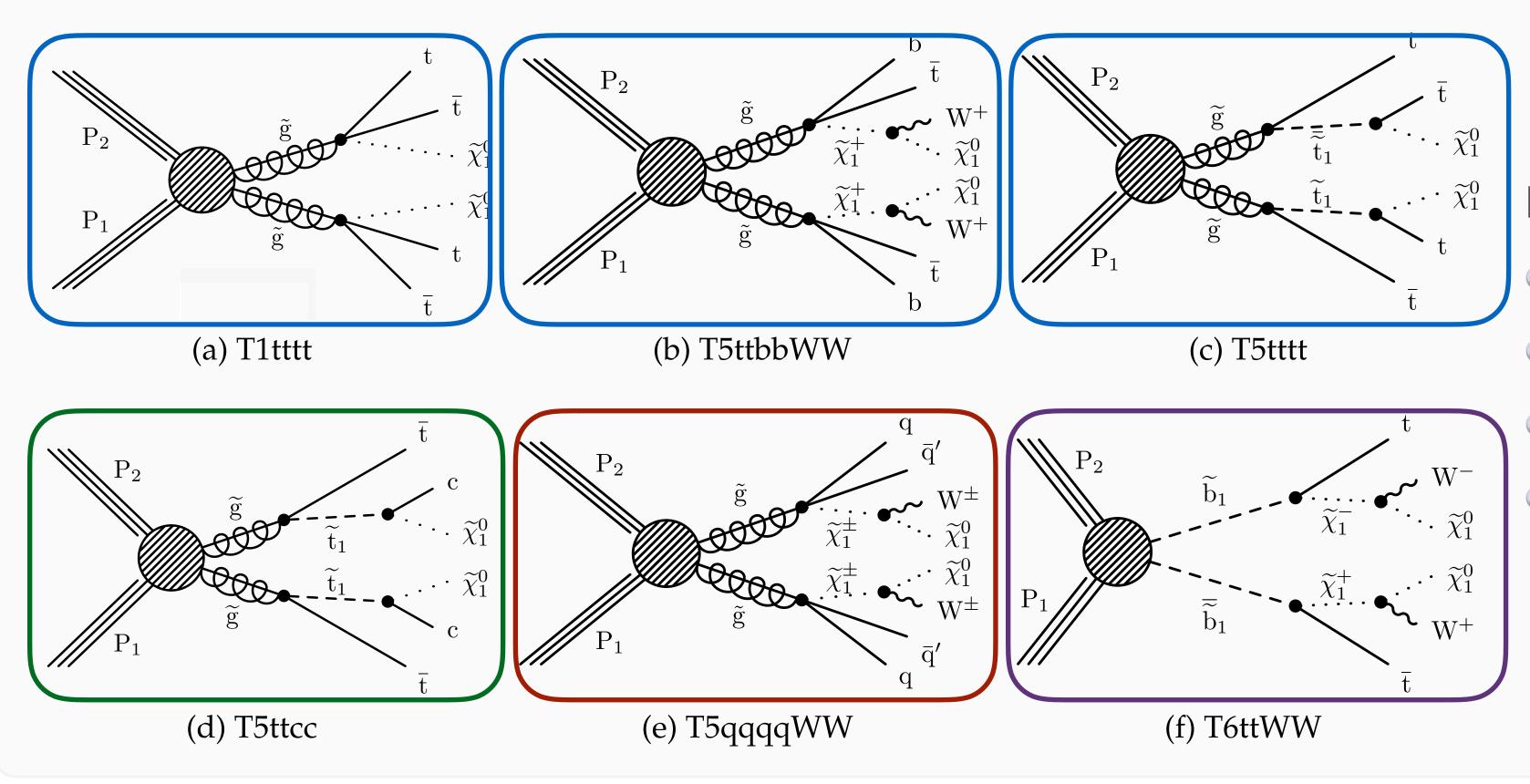


Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017 ETHzürich Results and interpretation: OSSF

In however a new result in the same final state released for SUSY17'

- o direct slepton production
- no jets
- ⊘ improving Run I results by 200 GeV
- and stau production

Searches for SUSY with same sign dileptons:


- Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton-proton collisions at $\sqrt{s} = 13$ TeV.
 - CMS-SUS-16-035
 - arXiv:1704.07323

ETHzürich

SUSY with same sign dileptons

SM processes with same sign final states are rare

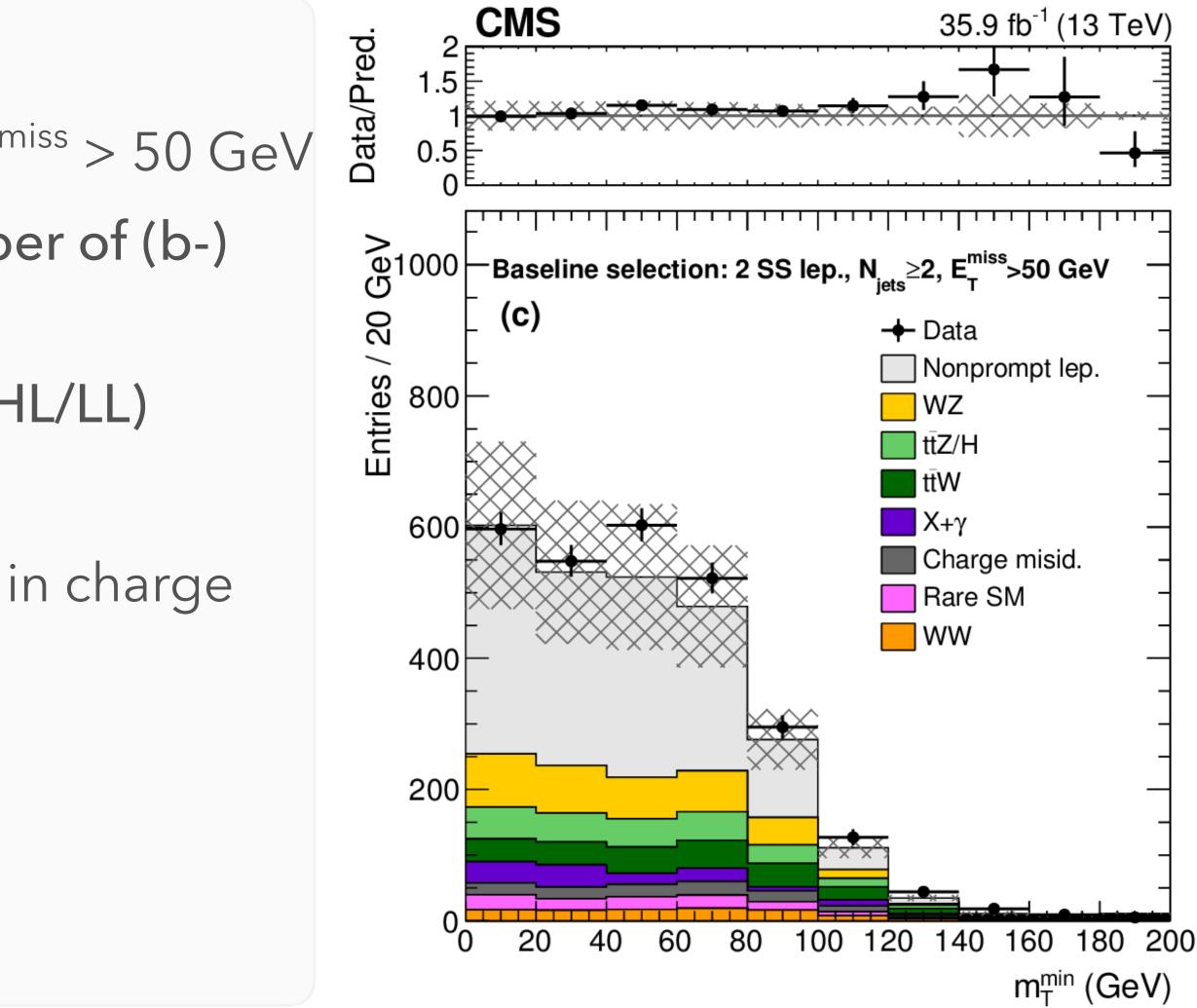
In a wide variety of strong produced SUSY scenarios

Final states with 4 W bosons:

- 4 b-jets
- 2 b-jets and 2 light flavor jets
- 4 light flavor jets
- 2 b-jets

Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017

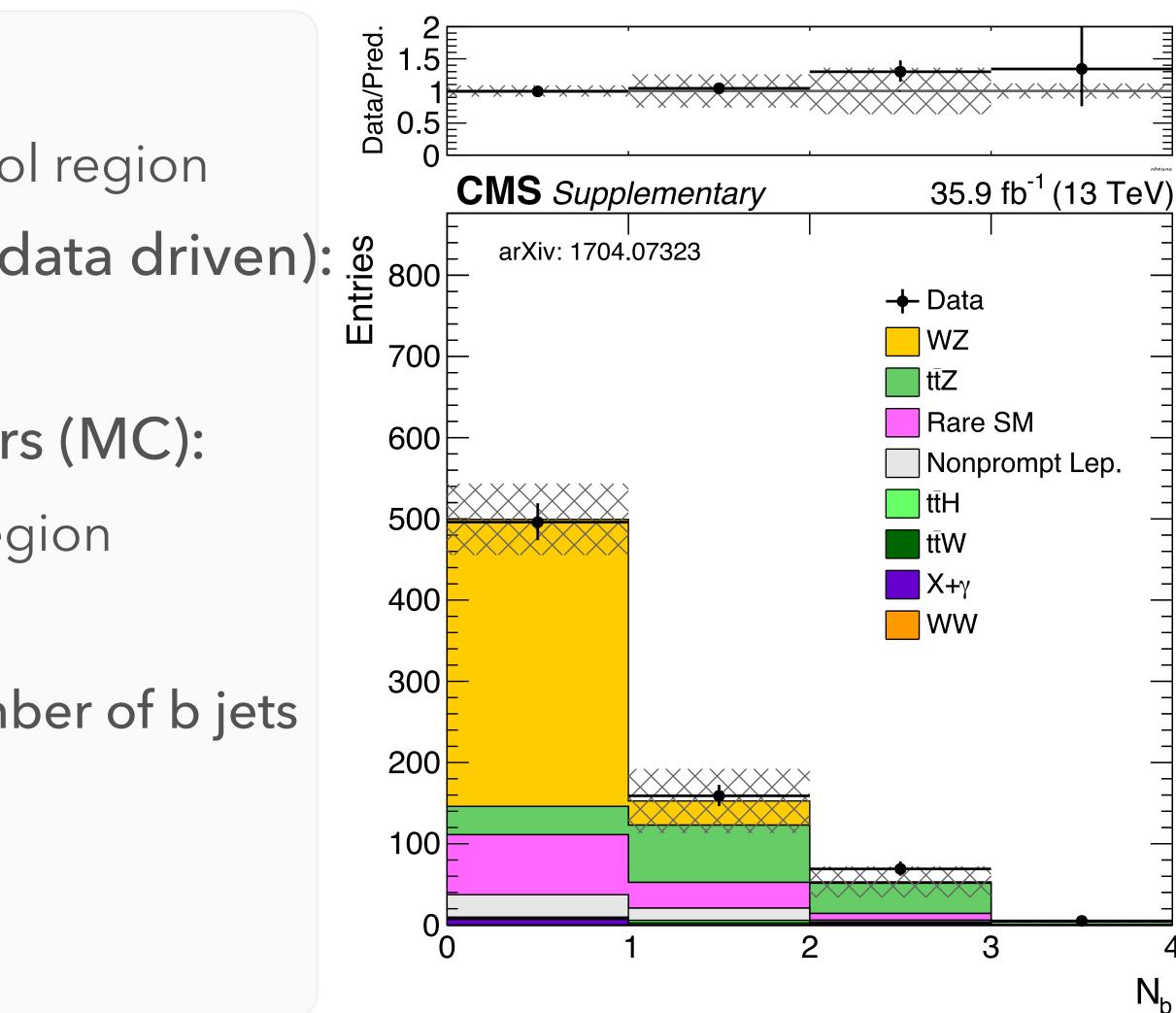
ETHzürich Search strategy: same sign dileptons


Baseline selection

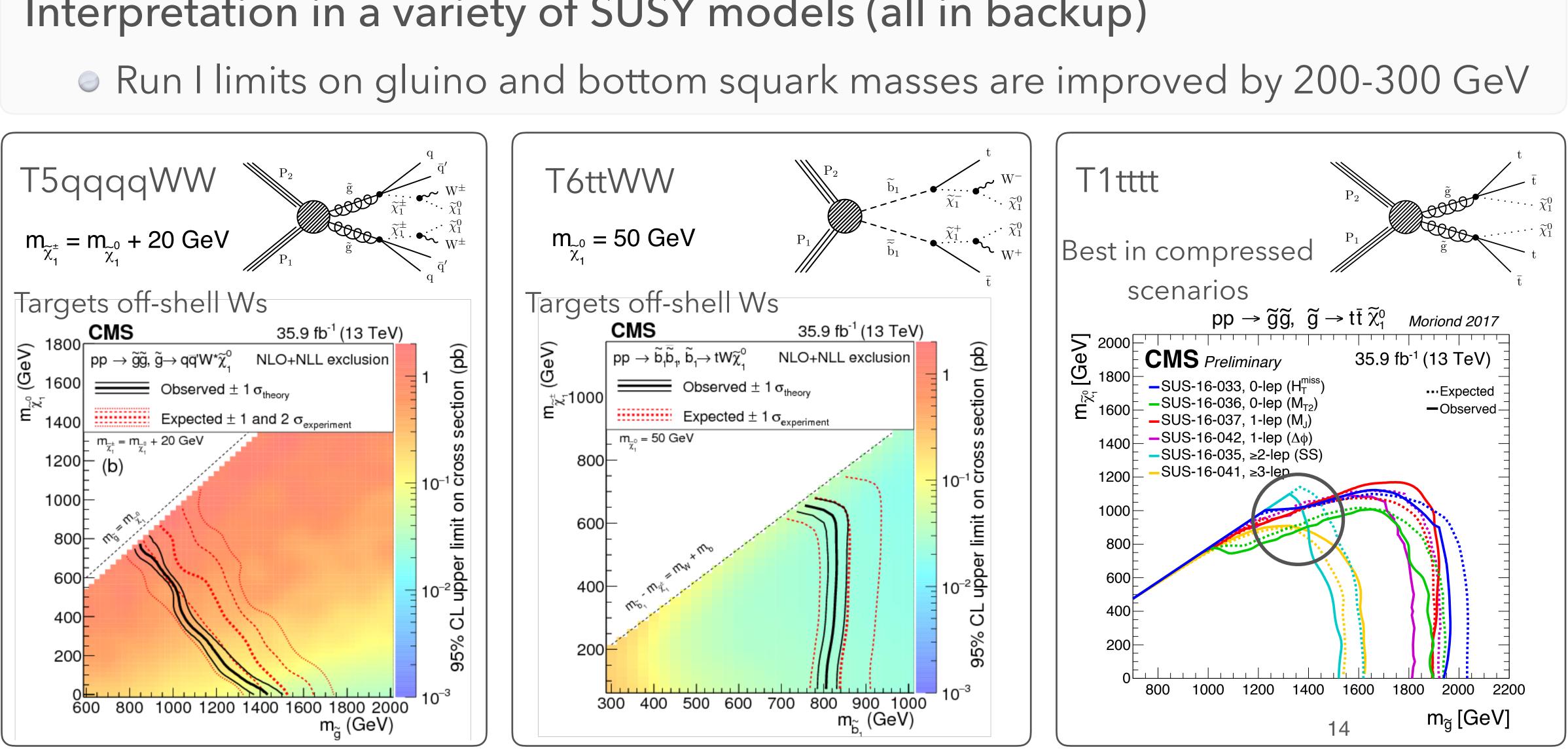
- Two equally charged leptons, ≥2 jets, p_T^{miss} > 50 GeV
- \bigcirc Signal regions binned in p_T^{miss} , H_T , number of (b-) jets and

 \bigcirc high and low p_T lepton regions (HH/HL/LL) \bigcirc Selection on $\ell^+\ell^+$ vs. $\ell^-\ell^-$

- the SM in pp collisions is asymmetric in charge
- Selection on min(M_T^{ℓ}):
 - for tt → 1ℓ have $M_T^{\ell} < M_W$.
 - reduces non-prompt background

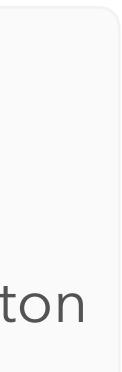


End zürich Background predicti

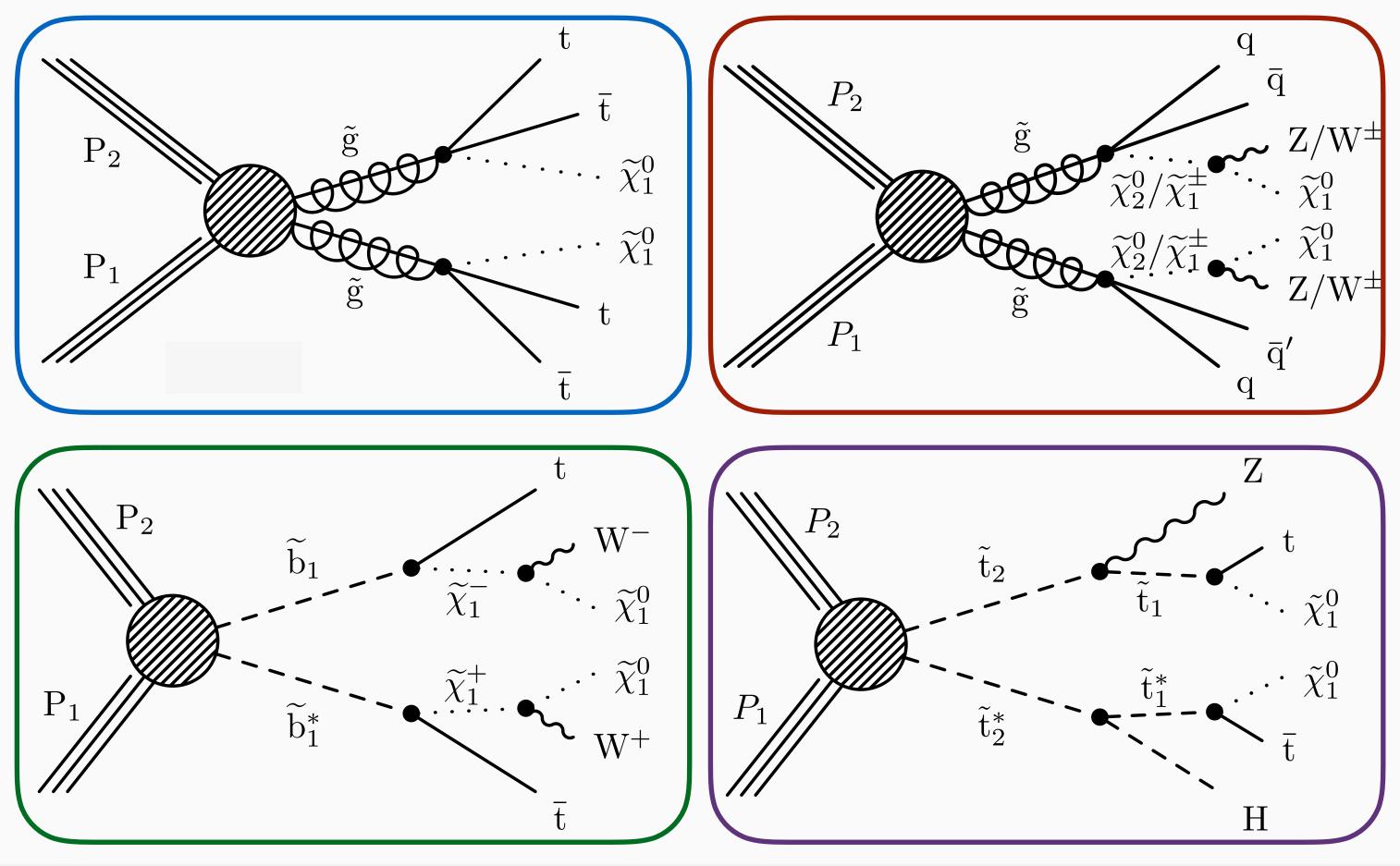

Non-prompt leptons (data driven): Tight-to-loose ratio estimated from control region Charge-misidentification of electrons (data driven): $\frac{8}{2}$ 800 • estimated using a $e^{\pm}e^{\mp}$ control sample Rare SM processes with prompt SS pairs (MC): \bigcirc WZ \rightarrow 3l and ttZ validated in 3l control region Itranslation factor of 1.26±0.09 for ttZ eta template fit to the distribution of the number of b jets • ttW and WW Rare and X+y: (MC)

Background prediction: same sign dileptons

ETHzürich Results and interpretation: same sign dileptons Interpretation in a variety of SUSY models (all in backup)



Searches for SUSY with multileptons:


- Search for new physics in events with multileptons and jets in 35.9 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 13$ TeV
 - CMS-SUS-16-041
 - arXiv:1710.09154

ETHzürich

SUSY with multileptons

 \geq 31 processes are rare in the SM, but can be natural to SUSY production

Strong production of SUSY resulting in final states with

- 4 b-jets and \geq 3ℓ from 4 W bosons
- \bigcirc 2 b-jets ≥3ℓ from 4 W bosons
- 4 light flavor jets and \geq 3ℓ from Z/ W bosons
- \bigcirc 2 b-jets and ≥3ℓ from Z/H bosons

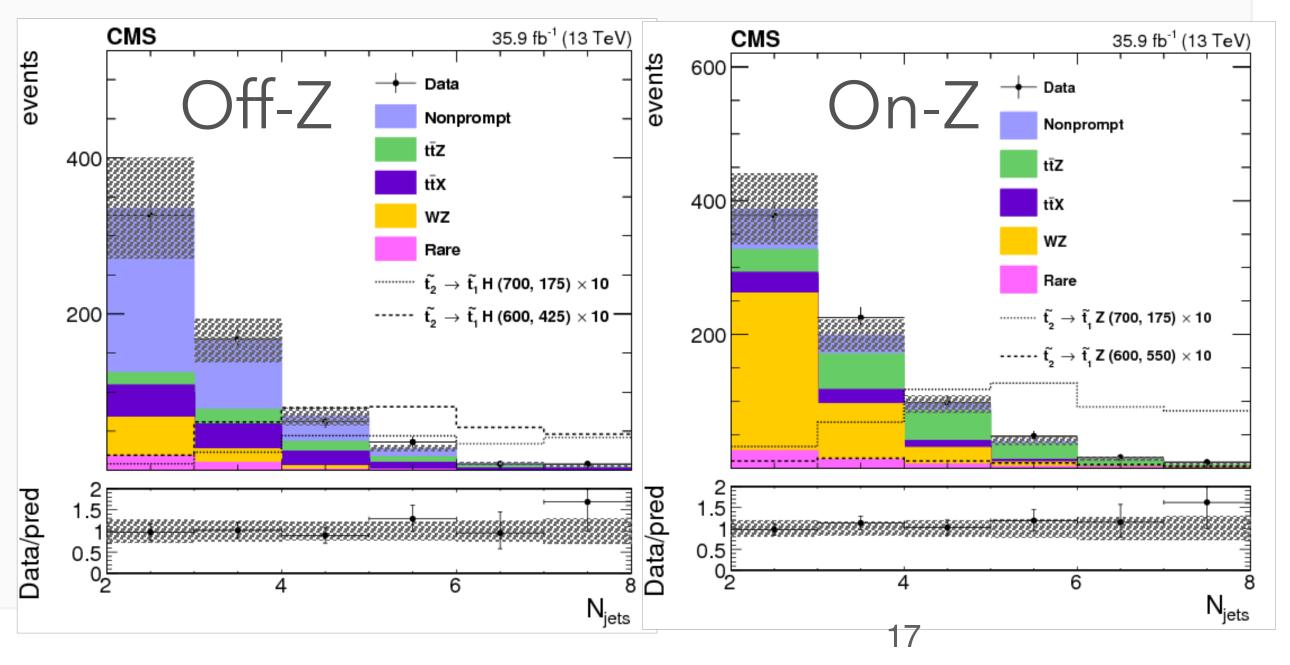
Search strategy: multileptons

Selection:

- $\ge 3\ell$, $m_{\ell\ell} > 12$ GeV for OSSF, ≥ 2 jets, $p_T^{miss} > 50 \text{ GeV}$
- On-Z regions:
 - OSSF pair with $|m_{\ell\ell} m_Z| < 15 \text{ GeV}$
- Off-Z regions:
 - OSSF pair with $|m_{\ell\ell} m_Z| \ge 15 \text{ GeV}$

Signal regions:

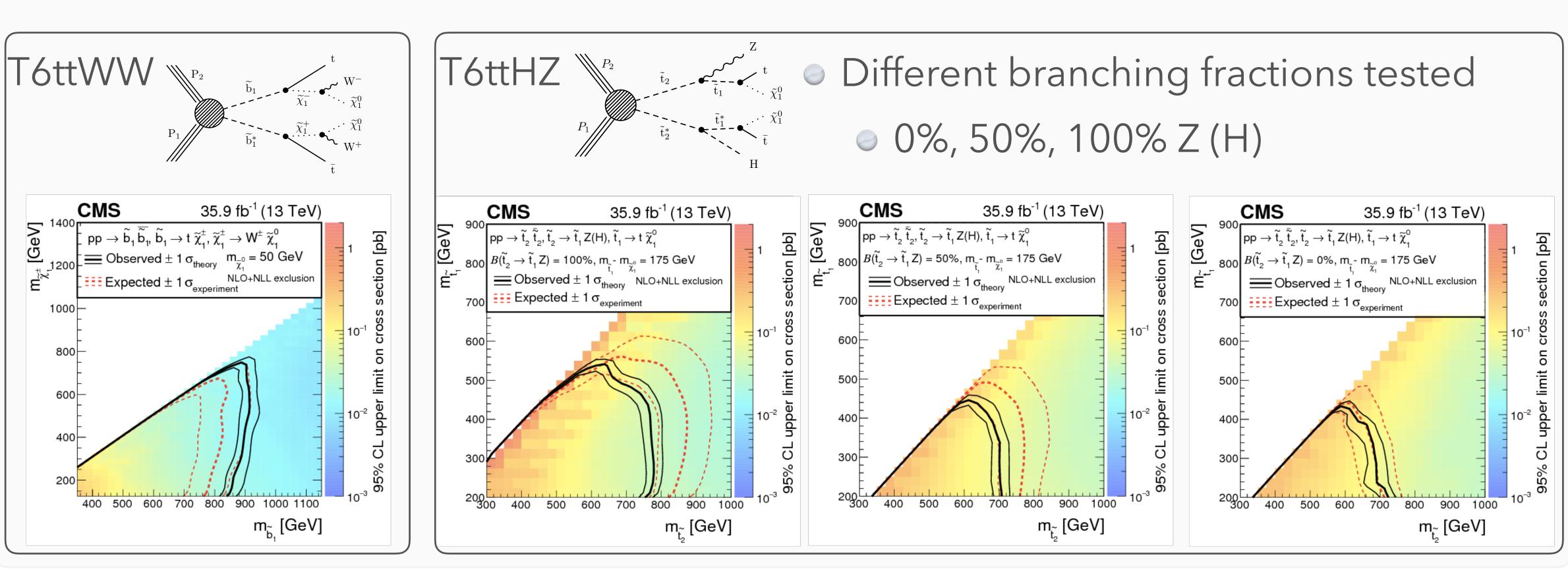
- \bigcirc Binning in (b-) jet multiplicity, H_T, p_T^{miss}, $m_{\ell\ell}$ and m_T
- 46 signal regions

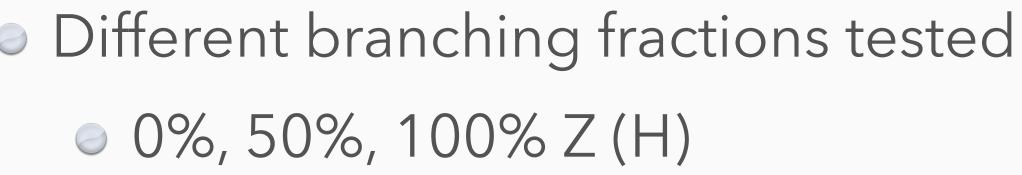

Non-prompt leptons (data driven):

same estimation method as same sign analysis

Diboson production and rare SM processes (MC):

- same estimation method as same sign analysis
 - translation factor of 1.14±0.28 for ttZ


Other rare backgrounds: ZZ, ttW, VVV, X+y (MC)



Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017 ETHzürich Results and interpretation: multileptons

Interpretation in a variety of SUSY models (all in backup) Interpretation on many of the same signals as for the same-sign search

ETHzürich

Summary

Searches for Strong Supersymmetry in leptonic final states has been presented

- Opposite sign leptons (CMS-SUS-16-034)
- Same sign leptons (CMS-SUS-16-035)
- Multileptons (CMS-SUS-16-041)
- All using data collected by the CMS detector at \sqrt{s} = 13 TeV in 2016

All searches reporting a large translation factor for ttZ

- I.31 for opposite sign, 1.26 for same-sign and 1.14 for multileptons
- interesting observation

No significant excess reported

- exclusion
- <u>cms-results/public-results/publications/SUS/</u>

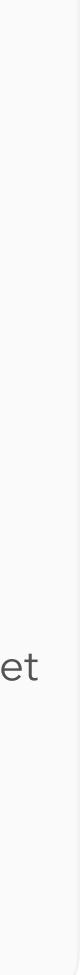
Imits set on a variety of SUSY models, greatly exceeding the Run I exclusion and 2015 Run II

aggregated signal regions provided to facilitate reinterpretation: <u>http://cms-results.web.cern.ch/</u>

Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017

Backup

ETHzürich Isolation variables to reduce non prompt backgrounds


Relative Isolation I_{rel}:

- with a p_T dependent radius
- $ΔR ≤ 10 GeV/(min(max(p_T^I, 50 GeV), 200 GeV))$ ratio p_T
- \bigcirc defined as the ratio of the lepton p_T and that of the jet geometrically closest to the lepton: p p_T : p_T/p_T
- \circ provides a way to identify low-p_T leptons from b-jets which has a larger opening angle rel p_T :
- $I_{rel} < I_1 AND (p_T^{ratio} > I_2 OR p_T^{rel} > I_3)$
- where I_1 , I_2 and I_3 are flavor dependent values

 \circ defined as the ratio of the amount of energy measured in a cone around the lepton to the p_T of the lepton, p_T,

In the defined as the magnitude of the component of the lepton momentum perpendicular to the axis of the closest jet It is variable allows the recovery of leptons from accidental overlap with jets in Lorentz-boosted topologies

ETHzürich

Tight-to-loose ratio

Tight-to-loose ratio

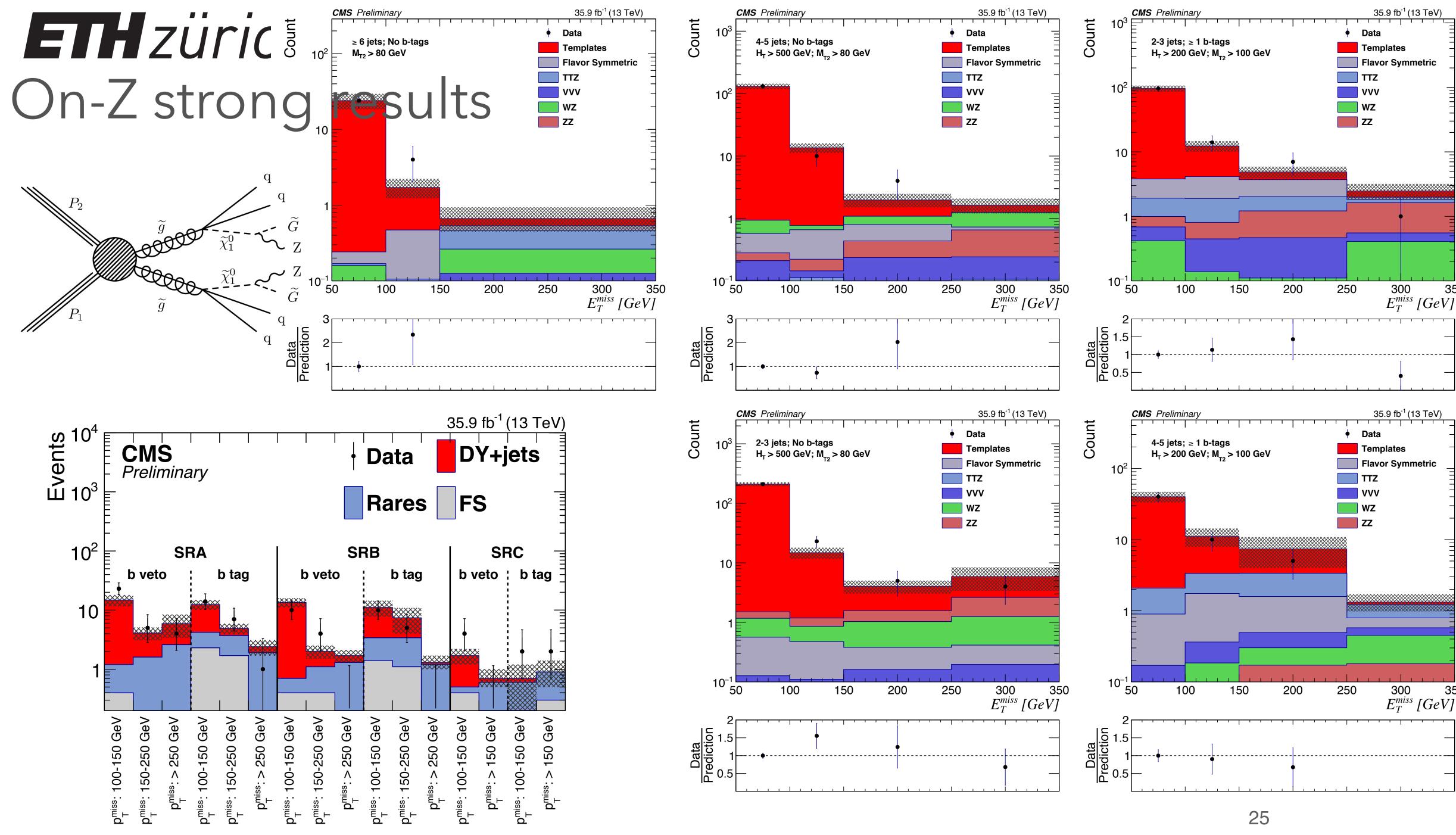
- loose requirements
- The events in this region are weighted by f/(1-f) where the tight-to-loose ratio f is the probability that a loosely identified lepton also satisfies the full set of requirements
- enriched in non-prompt leptons

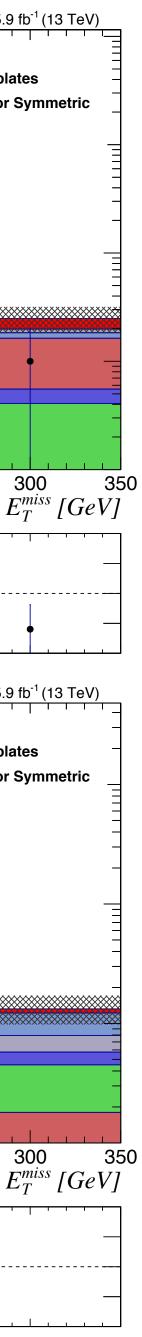
used to predict background from non-prompt leptons same sign and multilepton analyses Yield is estimated in application region that is similar to signal region but contains at least one lepton that fails the tight identification and isolation requirements but satisfies the

 \circ f measured as a function of lepton p_T and eta in a control sample of multijet events that is

Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017

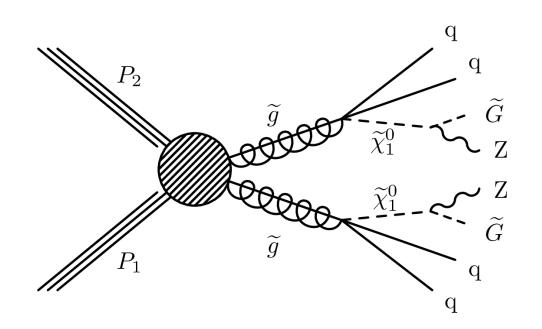
Opposite sign dileptons backup

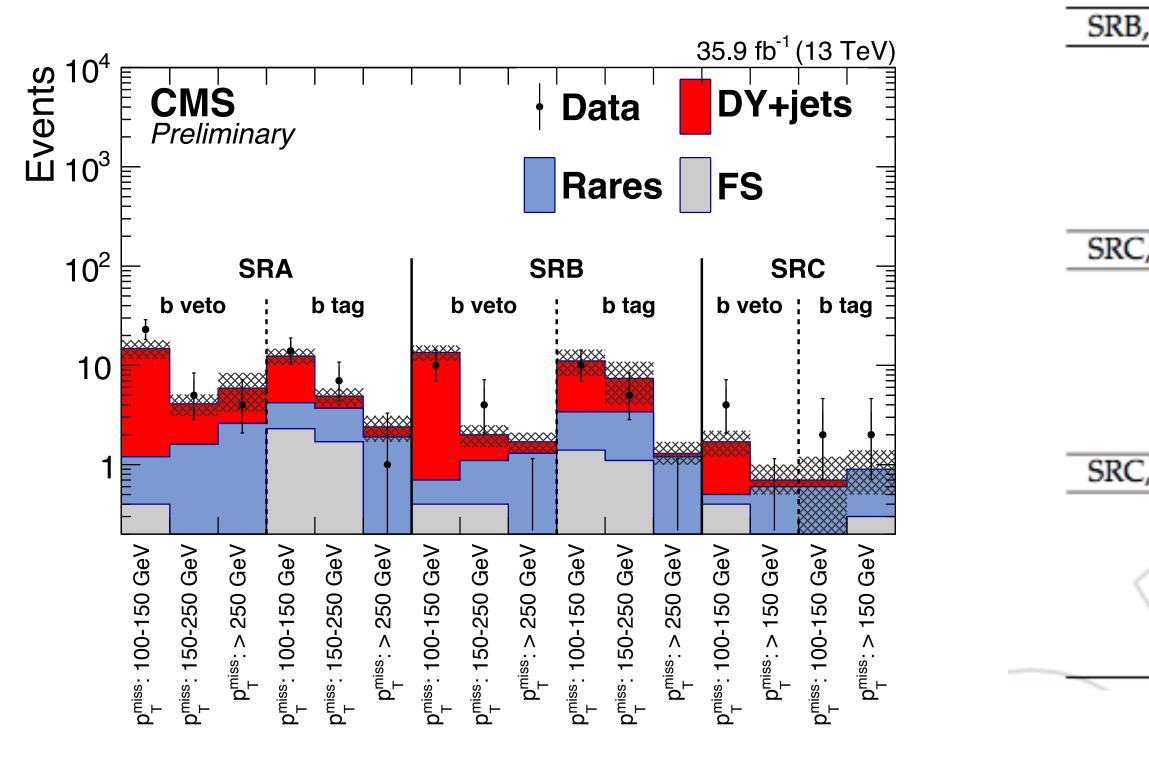




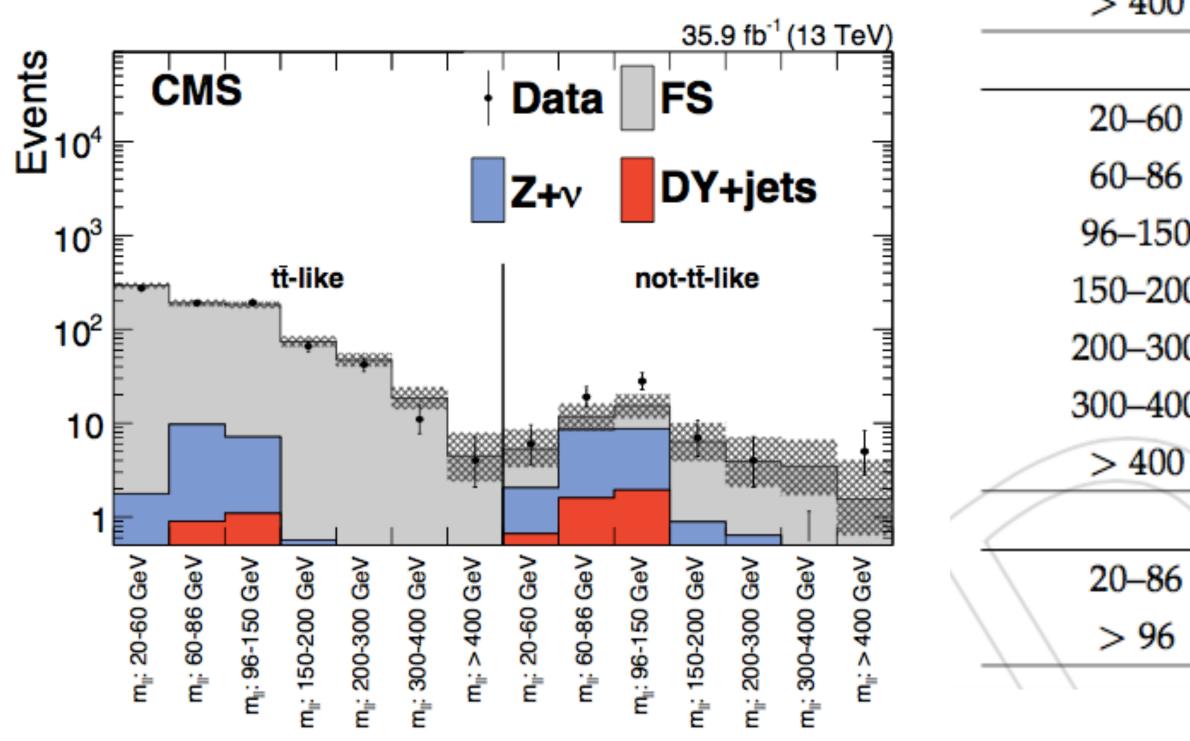
ETHzürich Summary of signal regions

Strong-production on-Z (86 < $m_{\ell\ell}$ < 96 GeV) signal regions										
Region	Njets	N _{b-jets}	H _T [GeV]	$M_{\rm T2}(\ell\ell)$ [GeV]	p _T ^{miss} binning [GeV]					
SRA b veto	2–3	= 0	> 500	> 80	100–150, 150–250, > 250					
SRB b veto	4–5	= 0	> 500	> 80	100–150, 150–250, > 250					
SRC b veto	≥ 6	= 0	-	> 80	100–150, > 150					
SRA b tag	2–3	≥ 1	> 200	> 100	100–150, 150–250, > 250					
SRB b tag	4–5	≥ 1	> 200	> 100	100–150, 150–250, > 250					
SRC b tag	≥ 6	≥ 1	-	> 100	100–150, > 150					
Electroweak-production on-Z ($86 < m_{\ell \ell} < 96$ GeV) signal regions										
Region	Njets	N _{b-jets}	Dijet mass [GeV]	M _{T2} [GeV]	p ^{miss} binning [GeV]					
VZ	≥2	= 0	$m_{ij} < 110$	$M_{\rm T2}(\ell\ell) > 80$	100–150, 150–250, 250–350, > 350					
HZ	≥ 2	= 2	$m_{\rm bb}^{''} < 150$	$M_{\rm T2}(\ell b \ell b) > 200$	100–150, 150–250, > 250					
Edge signal regions										
Region	N _{jets}	$p_{\rm T}^{\rm miss}$ [GeV]	$M_{\rm T2}(\ell\ell)$ [GeV]	t ī likelihood	$m_{\ell\ell}$ binning [GeV]					
Edge fit	≥2	> 150	> 80	-	> 20					
t ī -like	≥ 2	> 150	> 80	< 21	20–60, 60–86, 96–150, 150–200, 200–300, 300–400, > 400					
not-tt-like ≥ 2 > 150 $>$		> 80	> 21	same as tī-like						





ETHzürich On-Z strong results



SRA, b veto	$p_{\rm T}^{\rm miss}$ [GeV]	100-150	150-250	> 250
SKA, D Veto		100-130 13.6±3.1	2.5±0.9	> 250 3.3±2.4
	DY+jets			
	FS	$0.4^{+0.3}_{-0.2}$	$0.2^{+0.2}_{-0.1}$	$0.2^{+0.2}_{-0.1}$
	Z+v	0.8±0.3	1.4 ± 0.4	2.4 ± 0.8
	Total background	14.8 ± 3.2	4.0±1.0	5.9±2.5
CD 4 1 /	Data miss (C. 11)	23	5	4
SRA, b tag	p _T ^{miss} [GeV]	100-150	150-250	> 250
	DY+jets	8.2±2.1	1.2 ± 0.5	0.5 ± 0.3
	FS	2.3 ± 0.8	$1.7^{+0.7}_{-0.6}$	$0.1^{+0.2}_{-0.1}$
	$Z+\nu$	1.9 ± 0.4	2.0 ± 0.5	1.8 ± 0.6
	Total background	12.4 ± 2.3	4.9 ± 1.0	2.5 ± 0.7
	Data	14	7	1
SRB, b veto	$p_{\rm T}^{\rm miss}$ [GeV]	100-150	150-250	> 250
	DY+jets	12.8 ± 2.3	0.9±0.3	0.4 ± 0.2
	FS	$0.4^{+0.3}_{-0.2}$	$0.4^{+0.3}_{-0.2}$	$0.1^{+0.2}_{-0.1}$
	$Z+\nu$	0.3 ± 0.1	0.7±0.2	1.2 ± 0.4
	Total background	13.6 ± 2.4	2.0 ± 0.5	1.6 ± 0.4
	Data	10	4	0
SRB, b tag	$p_{\rm T}^{\rm miss}$ [GeV]	100-150	150-250	> 250
	DY+jets	7.7±3.2	4.0 ± 3.4	0.1±0.1
	FS	$1.4^{+0.6}_{-0.5}$	$1.1^{+0.5}_{-0.4}$	$0.2^{+0.2}_{-0.1}$
	$Z+\nu$	2.0 ± 0.5	2.3 ± 0.6	1.0 ± 0.3
	Total background	11.1 ± 3.3	7.4+3.5	$1.3^{+0.4}_{-0.3}$
	Data	10	5 3.4	0
SRC, b veto	$p_{\rm T}^{\rm miss}$ [GeV]	100-150	> 150	
	DY+jets	1.2±0.4	0.1 ± 0.1	4
	FS	$0.4^{+0.3}_{-0.2}$	0.1+0.2	
	Ζ+ν	0.1 ± 0.1	0.5 ± 0.2	
	Total background	1.7±0.5	07+0.3	
	Data	4	0	
SRC, b tag	p _T ^{miss} [GeV]	100-150	> 150	
	DY+jets	0.1±0.4	0.0±0.3	<u></u>
	FS	0.0+0.1	0.3±0.2	
	Z+v	0.6 ± 0.2	0.6±0.2	
	Total background	0.8 ± 0.5	0 9+0.5	
	Data	2	2	
	Data	4	4	

ETHzürich Edge results

- first MET bin used for normalization
- over prediction in high MET bins in EWK WZ region
- causing better observed limits than expe

 $m_{\ell\ell}$ range [

- 60-86 96-150
- 150-200
- 200-300
- 300-400
- > 400

						_
range [GeV]	FS	DY+jets	$Z+\nu$	Total background	Data	
		tī-lik	ke			
20–60	291^{+21}_{-20}	0.4±0.3	$1.4{\pm}0.5$	293^{+21}_{-20}	273	
60-86	181^{+16}_{-15}	0.9±0.7	8.8±3.4	190^{+16}_{-15}	190	
96–150	176^{+15}_{-14}	1.1±0.9	6.0±2.4	182^{+16}_{-15}	192	
150–200	73 ⁺¹⁰ _9	0.1±0.1	$0.4{\pm}0.2$	74_9^{+10}	66	
200–300	$46.9^{+8.4}_{-7.3}$	< 0.1	0.3 ± 0.1	$47.3^{+8.4}_{-7.3}$	42	
300–400	$18.5_{-4.5}^{+5.7}$	< 0.1	< 0.1	$18.6^{+5.7}_{-4.5}$	11	
> 400	$4.3^{+3.4}_{-2.1}$	< 0.1	< 0.1	$4.5^{+3.4}_{-2.1}$	4	
		Not-tī-	like			
20–60	$3.3^{+3.2}_{-1.8}$	0.7±0.5	1.4±0.5	$5.3^{+3.3}_{-1.9}$	6	1
60-86	$3.3^{+3.2}_{-1.8}$	1.6 ± 1.3	6.9±2.7	$11.8^{+4.4}_{-3.5}$	19	
96–150	$6.6^{+3.9}_{-2.6}$	1.9±1.5	6.8±2.7	$15.3^{+5.0}_{-4.1}$	28	
150–200	$5.5^{+3.7}_{-2.4}$	0.2±0.3	0.7±0.3	$6.4^{+3.7}_{-2.4}$	7	
200–300	$3.3^{+3.2}_{-1.8}$	0.2±0.2	0.5±0.2	$3.9^{+3.2}_{-1.8}$	4	
300–400	$3.3^{+3.2}_{-1.8}$	< 0.1	0.2±0.1	$3.5^{+3.2}_{-1.8}$	0	
> 400	$1.1^{+2.5}_{-0.9}$	< 0.1	0.4 ± 0.2	$1.6^{+2.5}_{-0.9}$	5	
		gregate SRs	(not-tī-lik	e)		
20–86	$6.5^{+3.9}_{-2.6}$	2.3±1.5	8.3±3.2	$17.1^{+5.3}_{-4.4}$	25	
> 96	$19.6^{+5.8}_{-4.6}$	2.4±1.6	8.5±3.4	$30.6^{+7.0}_{-6.0}$	44	
	1					1

ETHzürich Opposite sign dileptons: 3L control region for ttZ

- 3 lepton control region for ttZ
- In derived in data and used to scale the simulation
- $= 2 b tagged jets, p_T^{miss} > 30 GeV, 3 leptons, two$ of which must form an OSSF pair with m_{II} close to Z mass
- SF of 1.31+-0.09 for ttZ

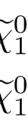
Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017

ETHzürich ttbar discriminant

Background rejection:

In the edge/ counting search, ttbar is ~the only background. Top likelihood classification:

- Use four characteristic ttbar variables:
 - \bigcirc dR between the leptons, di-lepton p_T, E_T^{miss}, sum of the two m_{lb}'s
 - Extract these events in data by selecting opposite flavour leptons (~100% ttbar)
- The NLL variable is defined as -2log(Likelihood)
 - where the likelihood is the product of the probabilities from the four ttbar pdf's


This NLL allows us to bin in ttbar efficiency

ttbar like (95% efficiency) and non-ttbar like (5%) efficiency)

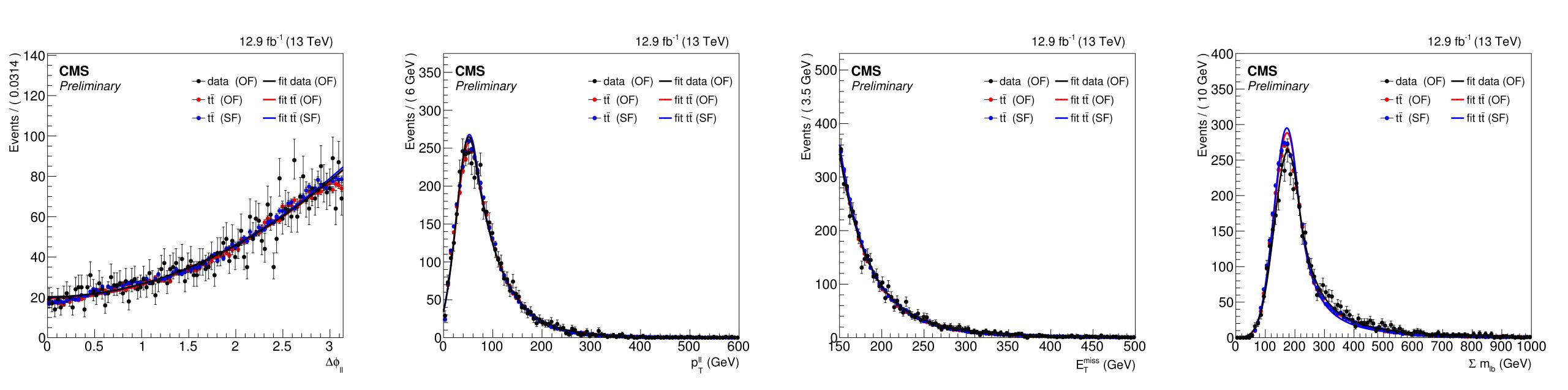
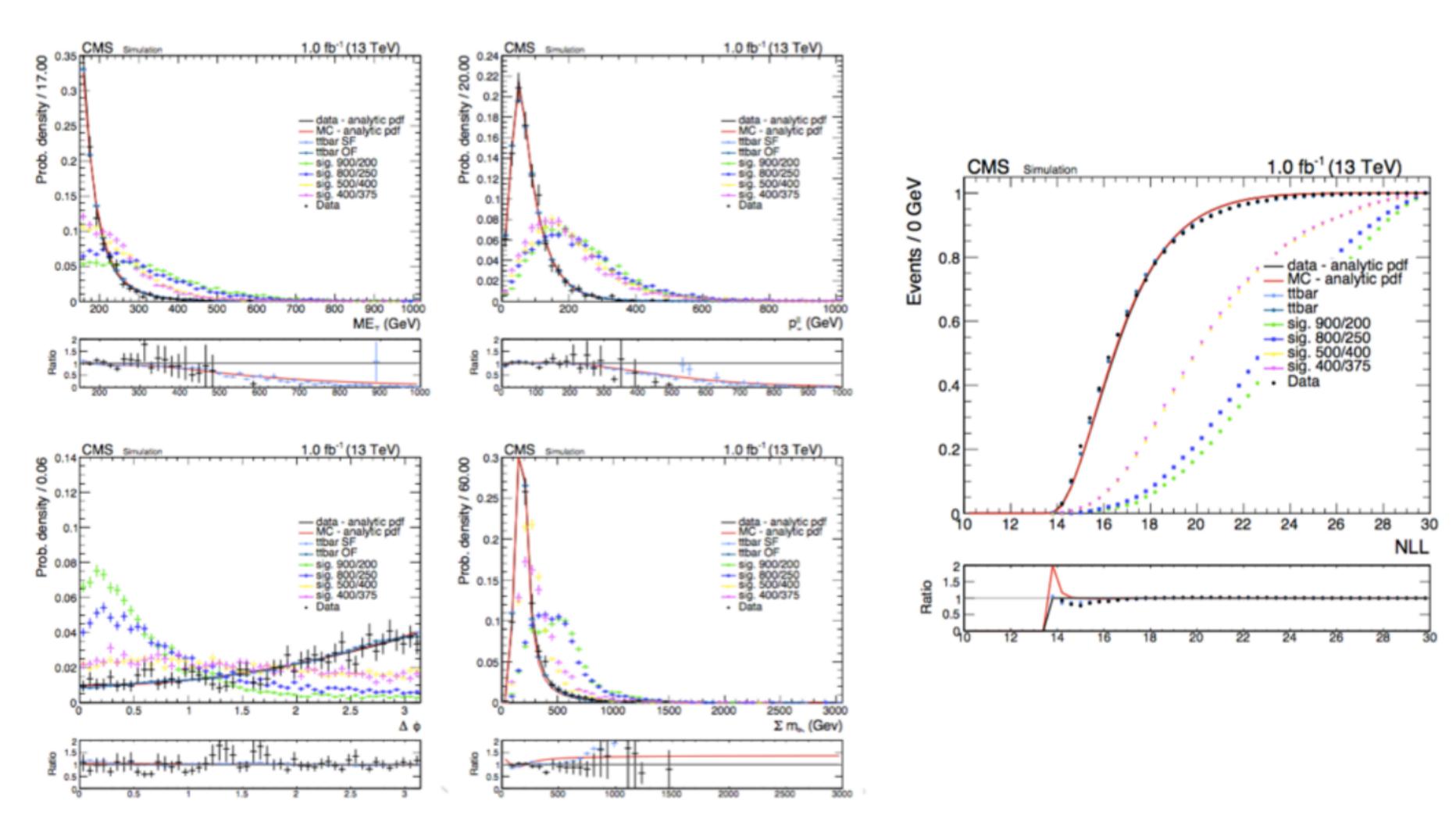

Diagram of a fully leptonic ttbar process:

Diagram of a signal SUSY process: P_2 χ_2° \widetilde{b} 29

ETHzürich ttbar discriminant

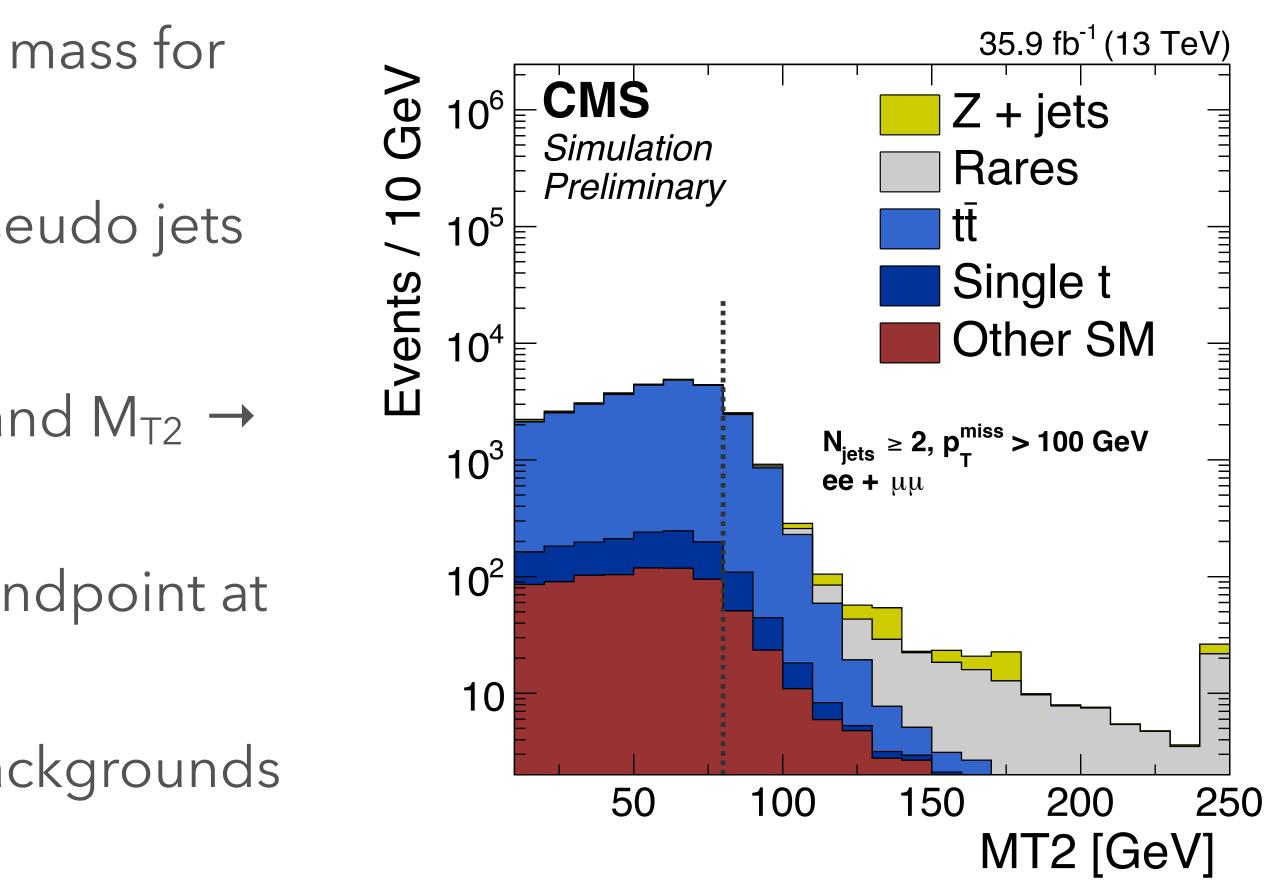

The four characteristic ttbar variables used as input in the NLL variable: \bigcirc dR between the leptons, di-lepton p_T , E_T^{miss} , sum of the two m_{lb} 's

Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017

ETH zürich Leonora Ve ttbar discriminant

Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017

Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017


ETHzürich M_{T2}

The M_{T2} is a generalization of the transverse mass for decay chains with two unobserved particles

- Oivision of events into two massless pseudo jets
- $= M_{T2}(m_{c}) = \min_{\vec{p}_{T}^{c(1)} + \vec{p}_{T}^{c(2)} = \vec{p}_{T}^{miss}} \left[max(M_{T}^{(1)}, M_{T}^{(2)}) \right]$
- this gives $M_{T2} < E_T^{miss}$ for SUSY events and $M_{T2} \rightarrow 0$ for multijet-like events
- \odot If all masses are known, M_{T2} will have an endpoint at the parent mass (~ M_T)

Very efficient to reduce ttbar and other backgrounds

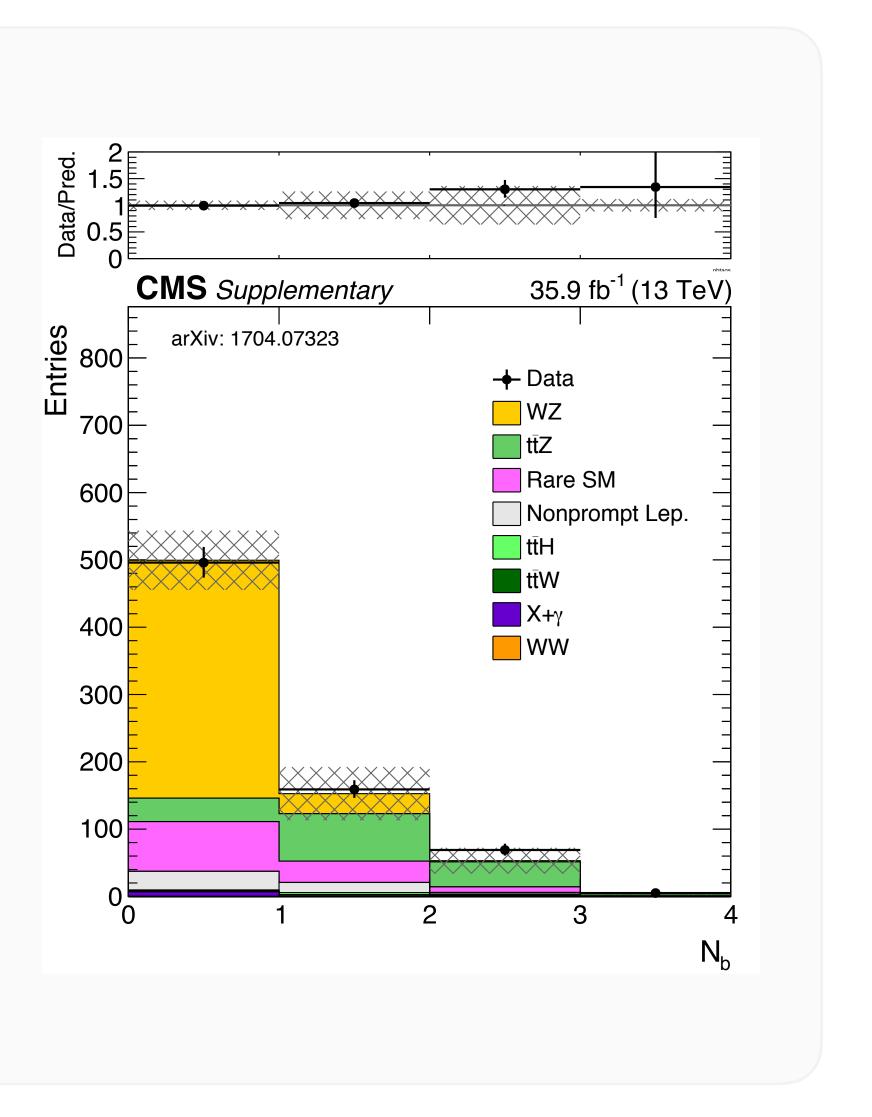
ETHzürich Systematic uncertainty

Source of uncertainty Integrated luminosity Lepton reconstruction ar Fast simulation lepton ef b tag modeling Trigger modeling Jet energy scale ISR modeling Pileup Fast simulation p_{T}^{miss} mo Renorm./fact. scales Statistical uncertainty Total uncertainty

	Uncertainty (%)
	2.5
nd isolation	5
efficiency	4
	0–5
	3
	0–5
	0-2.5
	1–2
odeling	0–4
	1–3
	1–15
	9–18

Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017

Same sign dileptons backup



ETHzürich Same sign dileptons: 3L control region

- 3 lepton control region
- In derived in data and used to scale the simulation
- applicable for SM backgrounds as WZ and ttZ
- ≤ 2 jets, $p_T^{miss} > 30$ GeV, 3 leptons, two of which must form an OSSF pair with m_{II} close to Z mass
- based on a template fit to the distribution of the number of b jets
- SF of 1.26+-0.09 for WZ and 1.14+-0.30 for ttZ

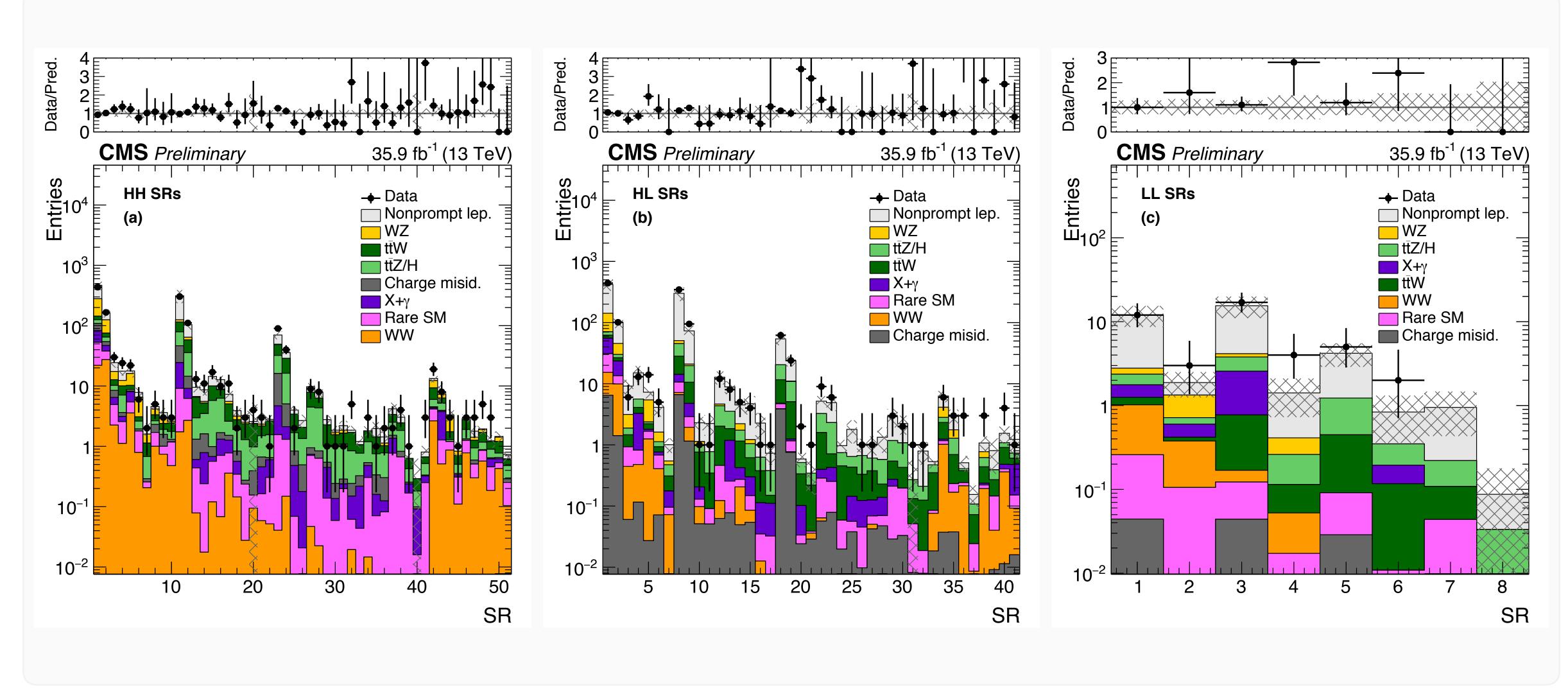
ETHzürich Same sign dileptons: signal regions

ΗH

	<120 -	E _T ^{miss} (GeV) 50 - 200 200 - 300	N _{jets} 2-4 ≥5	H _T < 300 GeV SR1	$H_T \in [300, 1125] \text{ GeV}$	$H_T \in [1125, 1300]$ GeV	$H_{\pi} \in [1300, 1600] C_{eW}$	H > 1000 C M									
	<120		2-4 ≥5	SRI			117 E [1500, 1000] GEV	$H_{\rm T} > 1600{\rm Gev}$		Nb	m_T^{Π}	^{un} (GeV)	H _T (GeV	$E_T^{miss} \in [50, 20]$	0 GeV E ^{mise}	$^{\circ} > 200 \text{GeV}$	
		200 - 300			SR2 SR4		SR48 (++) / SR49 ()	SR50 (++) / SR51 ()	Ē	0		<120		SR1	-1	SR2	
0			2-4 ≥5		SR5 (++) / SR6 () SR7					1				SR3		SR4	
		50 - 200	2-4	SR3	SR8 (++) / SR9 ()					2			>300	SR5		SR6	
>	>120	200 - 300	≥5 2-4 ≥5		SR10					≥3					SR7		
		50 200	2-4	SR11	SR12				L	Inclusiv	/e	>120			SR8		
	<120	50 - 200	≥5	SR13 (LL) (SR15 (++) / SR16 ()												
1		200 - 300	2-4 ≥5		SR17 (++) / SR18 () SR19	SR46 (++) / SR47 (-)			HI								
- I.,	>120	50 - 200	2-4 ≥5		SR20 (++) / SR21 ()												
	- 120	200 200	2-4 ≥5		SR22					Nb	$m_{\rm T}^{\rm min}$ (GeV)	E _T ^{miss} (GeV)	N_{jets} $H_{\text{T}} < 300$	GeV $ H_T \in [300, 1125]$ GeV	$H_{\rm T} \in [1125, 1300]$ Ge	$V \mid H_{\rm T} > 1300 {\rm Ge}$	
	50 - 200	50 - 200	2-4 ≥5	SR23	SR24					0	0 <120		2-4 SR1 ≥5	SR2 SR4			
<	<120	200 - 300 2-4	SR27 (++) / SR28 () SR29 (++) / SR30 ()						120	200 - 300	2-4 SR3 ≥5	SR5 (++) / SR6 (-) SR7	-				
2			≥5 2-4	SR25 (++) / SR26 ()	SR31 SR32 (++) / SR33 ()					1	<120	50 - 200	2-4 SR8 ≥5 CD10 (SR9 SR12 (++) / SR13 ()	-		
	>120	50 - 200	≥ 5									200 200 2	2-4 SR10 (+ >5 SR11 (SR14 (++) / SR15 ()]		
	200 - 300 -	200 - 300 2-4 25		SR34							50 - 200	2-4 SR18	SR19	SP30 (-)	SR40 (++) / SR41 ()		
≥3 >120	<120	50 - 200 200 - 300	≥2	SR35 (++) / SR36 ()	SR37 (++) / SR38 () SR39					2	2 <120	200 200 2	≥5 2-4 ≥5 SR20 (+ SR21 (-	SR /4 (++1 / SR /5 (-1		5141 (**)	
	>120	50 - 300	≥ 2	SR40	SR41					≥3	<120	50 - 200 200 - 300	CD277.) / SR29 (++) / SR30 ()	-		
nclusive inc	nclusive	300 - 500	≥ 2	_		SR42 (++) / 5				inclusive	>120	50 - 300	≥2 SR32	SR33	1		
		>500		_		SR44 (++) / 5	sR45 ()			inclusive	inclusive	300 - 500 >500	≥2		SR34 (++) / SR35 () SR36 (++) / SR37 ()		

	HH reg	zions	HL reg	ions	LL reg	ons
	Expected SM		Expected SM		Expected SM	Observed
SR1	468 ± 98	435	419 ± 100	442	12.0 ± 3.9	12
SR2	162 ± 25	166	100 ± 20	101	1.88 ± 0.62	3
SR3	24.4 ± 5.4	30	9.2 ± 2.4	6	15.5 ± 4.7	17
SR4	17.6 ± 3.0	24	15.0 ± 4.5	13	1.42 ± 0.69	4
SR5	17.8 ± 3.9	22	7.3 ± 1.5	14	4.2 ± 1.4	5
SR6	7.8 ± 1.5	6	4.1 ± 1.2	5	0.84 ± 0.48	2
SR7	1.96 ± 0.47	2	1.01 ± 0.28	0	0.95 ± 0.52	0
SR8	4.58 ± 0.81	5	300 ± 82	346	0.09 ± 0.07	0
SR9	3.63 ± 0.75	3	73 ± 17	95		
SR10	2.82 ± 0.56	3	2.30 ± 0.61	1		
SR11	313 ± 87	304	2.24 ± 0.87	1		
SR12	104 ± 20	111	12.8 ± 3.3	12		
SR13	9.5 ± 1.9	13	8.9 ± 2.3	8		
SR14	8.7 ± 2.0	11	4.5 ± 1.3	5		
SR15	14.4 ± 2.9	17	4.7 ± 1.6	4		
SR16	12.7 ± 2.6	10	2.3 ± 1.1	1		
SR17	7.3 ± 1.2	11	0.73 ± 0.29	1		
SR18	3.92 ± 0.79	2	54 ± 12	62		
SR19	3.26 ± 0.74	3	23.7 ± 4.9	24		
SR19 SR20	2.6 ± 2.7	4	0.59 ± 0.17	2		
SR20	3.02 ± 0.75	3	0.39 ± 0.17 0.34 ± 0.20	1		
SR21	2.80 ± 0.57	1	5.2 ± 1.2	9		
SR23	70 ± 12	90	4.9 ± 1.4	6		
SR25	35.7 ± 5.9	40	0.97 ± 0.27	0		
SR24	3.99 ± 0.73	2	1.79 ± 0.74	0		
SR26	2.68 ± 0.80	0	1.01 ± 0.27	1		
SR20	9.7 ± 1.8	9	1.01 ± 0.27 1.03 ± 0.44	1		
SR28	7.9 ± 2.5	8	1.33 ± 0.61	0		
SR29	2.78 ± 0.58	1	2.89 ± 0.99	3		
SR30	1.86 ± 0.38	1	2.39 ± 0.39 2.24 ± 0.79	2		
SR30 SR31	1.30 ± 0.30 2.20 ± 0.54	1	0.27 ± 0.30	1		
SR31	1.85 ± 0.39	5	0.27 ± 0.30 0.79 ± 0.33	1		
SR32	1.33 ± 0.39 1.20 ± 0.32	0	0.53 ± 0.13	0		
SR34	1.20 ± 0.32 1.81 ± 0.42	3	6.3 ± 1.3	6		
SR34 SR35	1.91 ± 0.42 1.98 ± 0.61	1	2.92 ± 0.87	3		
SR36	1.43 ± 0.37 1.43 ± 0.37	2	0.51 ± 0.15	3		
SR37	4.2 ± 1.3	2	0.51 ± 0.15 0.15 ± 0.07	0		
SR38	4.2 ± 1.5 3.04 ± 0.68	2 A	1.07 ± 0.33	3		
SR39	0.63 ± 0.17	1	0.81 ± 0.47	0		
	0.83 ± 0.17 0.29 ± 0.34	0		4		
SR40 SR41		3	1.54 ± 0.50 1.23 ± 0.52	1		
SR41	0.80 ± 0.22 12.4 \pm 1.0		1.23 ± 0.53	1		
SR42	13.4 ± 1.9	19 8				
SR43	8.0 ± 3.0 3.33 ± 0.74	3				
SR44 SR45	3.33 ± 0.74 0.94 ± 0.26	1				
SR45 SR46		2				
SR46	2.92 ± 0.50 1.78 ± 0.42	3				
SR47	1.78 ± 0.42 1.05 ± 0.20	3 5				
SR48	1.95 ± 0.39 1.23 ± 0.20					
SR49	1.23 ± 0.30	3				
SR50	1.46 ± 0.31	0				
SR51	0.74 ± 0.18	0				

SR	Leptons	N _{jets}	Nb	H_T (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	$m_{\rm T}^{\rm min}$ (GeV)	SM expected	Observed	N ^{95%CL} obs,UL
InSR1		≥ 2	0	≥ 1200	≥ 50	—	4.00 ± 0.79	10	12.35
InSR2		≥ 2	≥ 2	≥ 1100	≥ 50	—	3.63 ± 0.71	4	5.64
InSR3		≥ 2	0	_	≥ 450	—	3.72 ± 0.83	4	5.62
InSR4		≥ 2	≥ 2	_	≥ 300	—	3.32 ± 0.81	6	8.08
InSR5		≥ 2	0	_	≥ 250	≥ 120	1.68 ± 0.44	2	4.46
InSR6	HH	≥ 2	≥ 2	—	≥ 150	≥ 120	3.82 ± 0.76	7	9.06
InSR7		≥ 2	0	≥ 900	≥ 200	—	5.6 ± 1.1	10	10.98
InSR8		≥ 2	≥ 2	≥ 900	≥ 200	—	5.8 ± 1.3	9	9.77
InSR9		≥ 7	-	—	≥ 50	—	10.1 ± 2.7	9	7.39
InSR10		≥ 4	-	_	≥ 50	≥ 120	15.2 ± 3.5	22	16.73
InSR11		≥ 2	≥ 3	—	≥ 50	—	13.3 ± 3.4	17	13.63
InSR12		≥ 2	0	≥ 700	≥ 50	—	3.6 ± 2.5	3	4.91
InSR13	LL	≥ 2	-	—	≥ 200		4.9 ± 2.9	10	11.76
InSR14	LL	≥ 5	-	—	≥ 50	—	7.3 ± 5.5	6	6.37
InSR15		≥ 2	≥ 3	—	≥ 50	—	1.06 ± 0.99	0	2.31

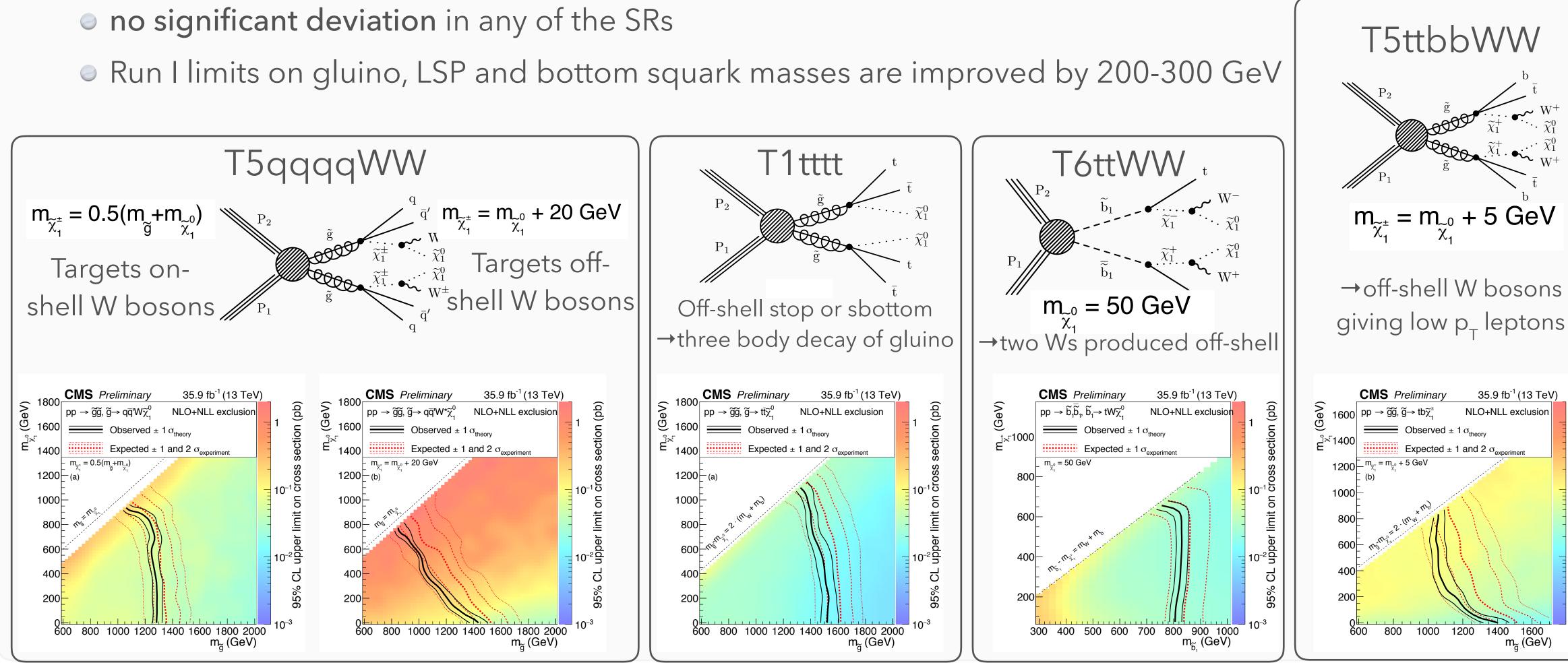

Aggregate inclusive signal regions

Aggregate exclusive signal regions

SR	Leptons	Njets	Nb	$E_{\rm T}^{\rm miss}$ (GeV)	H_T (GeV)	$m_{\rm T}^{\rm min}$ (GeV)	SM expected	Observed
ExSR1		≥2	0	50-300	<1125	< 120 for $H_T > 300$	700 ± 130	685
ExSR2		≥ 2	0	50-300	300-1125	≥ 120	11.0 ± 2.2	11
ExSR3		≥ 2	1	50-300	<1125	<120 for $H_{\rm T} > 300$	477 ± 120	482
ExSR4		≥ 2	1	50-300	300-1125	≥ 120	8.4 ± 3.5	8
ExSR5		≥ 2	2	50-300	<1125	<120 for $H_{\rm T} > 300$	137 ± 25	152
ExSR6	HH	≥ 2	2	50-300	300-1125	≥ 120	4.9 ± 1.2	8
ExSR7		≥ 2	≥ 3	50-300	<1125	<120 for $H_T > 300$	11.6 ± 3.1	10
ExSR8		≥ 2	≥ 3	50-300	300-1125	≥ 120	0.8 ± 0.24	3
ExSR9		≥ 2	_	\geq 300	≥ 300	_	25.7 ± 5.4	31
ExSR10		≥ 2	—	50-300	≥ 1125	—	10.1 ± 2.2	14
ExSR11		≥ 2	—	50-300	<1125	<120	1070 ± 250	1167
ExSR12	HL	≥ 2	_	50-300	<1125	≥ 120	1.33 ± 0.46	1
ExSR13	nı	≥ 2	_	≥ 300	≥ 300	_	9.9 ± 2.5	12
ExSR14		≥ 2	—	50-300	≥ 1125	_	4.7 ± 1.8	8
ExSR15	LL	≥ 2	—	≥ 50	≥ 300	_	37 ± 12	43

Same sign dileptons: results

Source


Integrated luminosity Lepton selection Trigger efficiency Pileup Jet energy scale b tagging Simulated sample size Scale and PDF variation WZ (normalization) ttZ (normalization) Nonprompt leptons Charge misidentification

Same sign dileptons: systematics

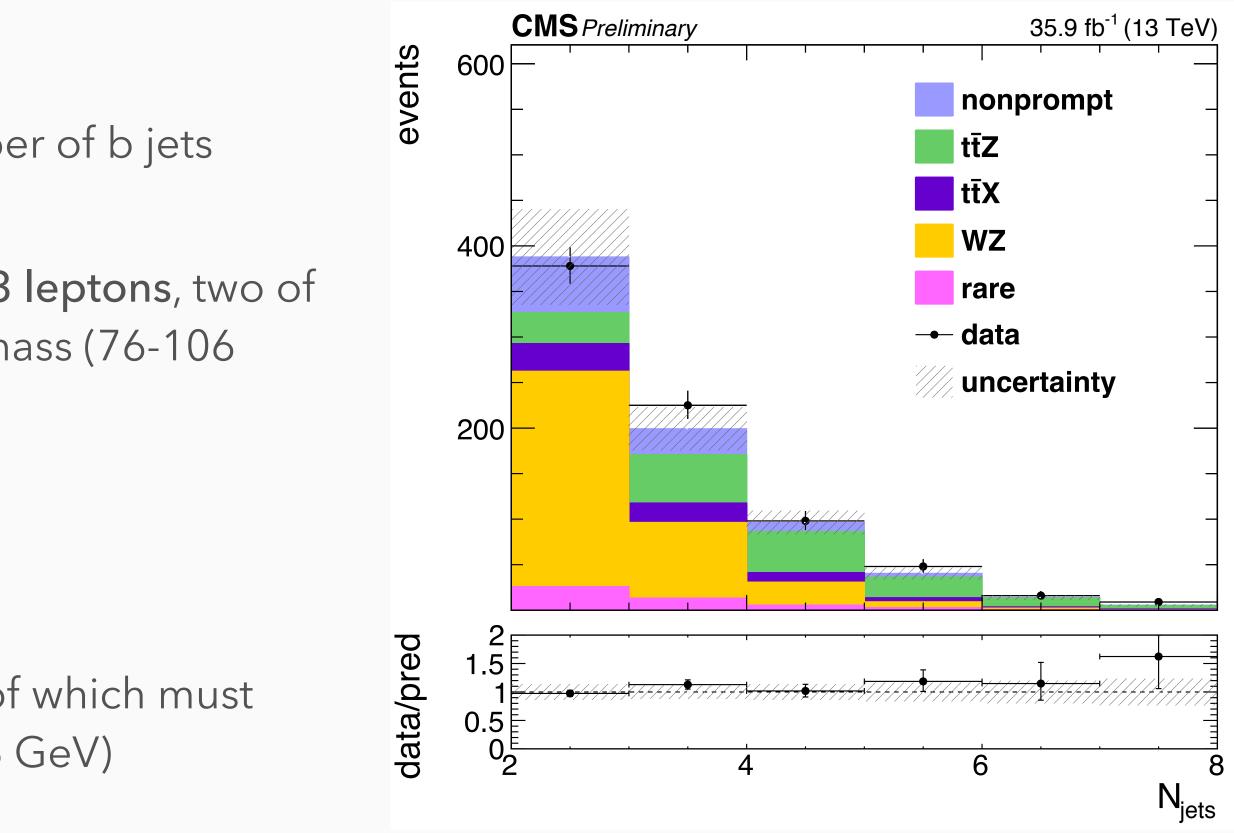
	Typical uncertainty (%)
	2.5
	4 - 10
	2-7
	0-6
	1 - 15
	1 - 15
	1 - 10
ns	10 - 20
	12
	30
	30 - 60
m	20

Interpretation in a variety of SUSY models

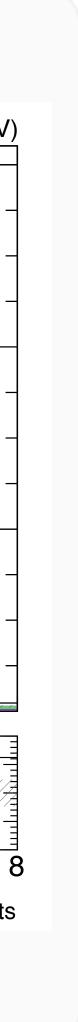
Same sign dileptons: Interpretations

Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017

Multileptons backup


Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017

Multileptons: 3L control region


3 lepton control region

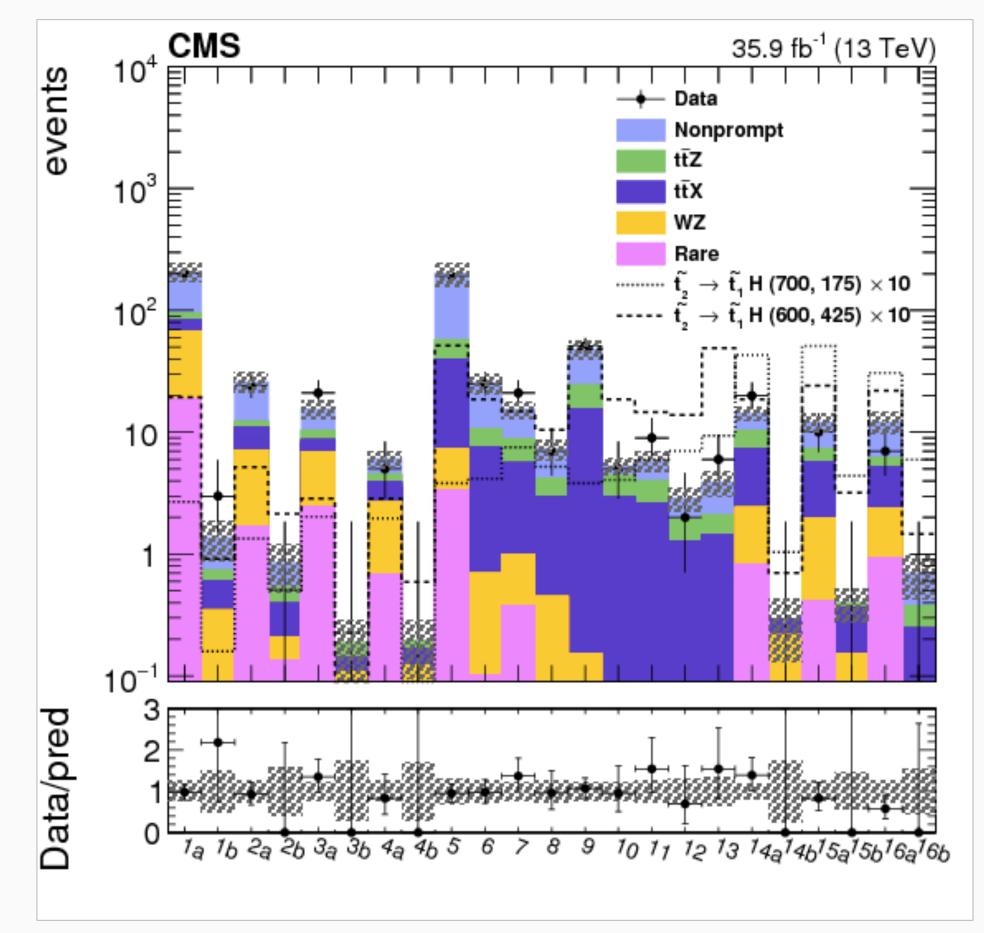
- In derived in data and used to scale the simulation
- applicable for SM backgrounds as WZ and ttZ
- based on a template fit to the distribution of the number of b jets
- WZ region:
 - ≥ 2 jets, 30 GeV < p_T^{miss} < 100 GeV, M_T > 50 GeV, 3 leptons, two of which must form an OSSF pair with $m_{||}$ close to Z mass (76-106 GeV)
 - 80% purity of WZ
 - SF of 1.01+-0.07
- ttZ region:
 - ≥ 3 jets, 30 GeV < p_T^{miss} < 50 GeV, 3 leptons, two of which must form an OSSF pair with m_{II} close to Z mass (76-106 GeV)
 - 20% purity overall and 50% purity in > 0 bjet bins
 - SF of 1.14 +-0.28

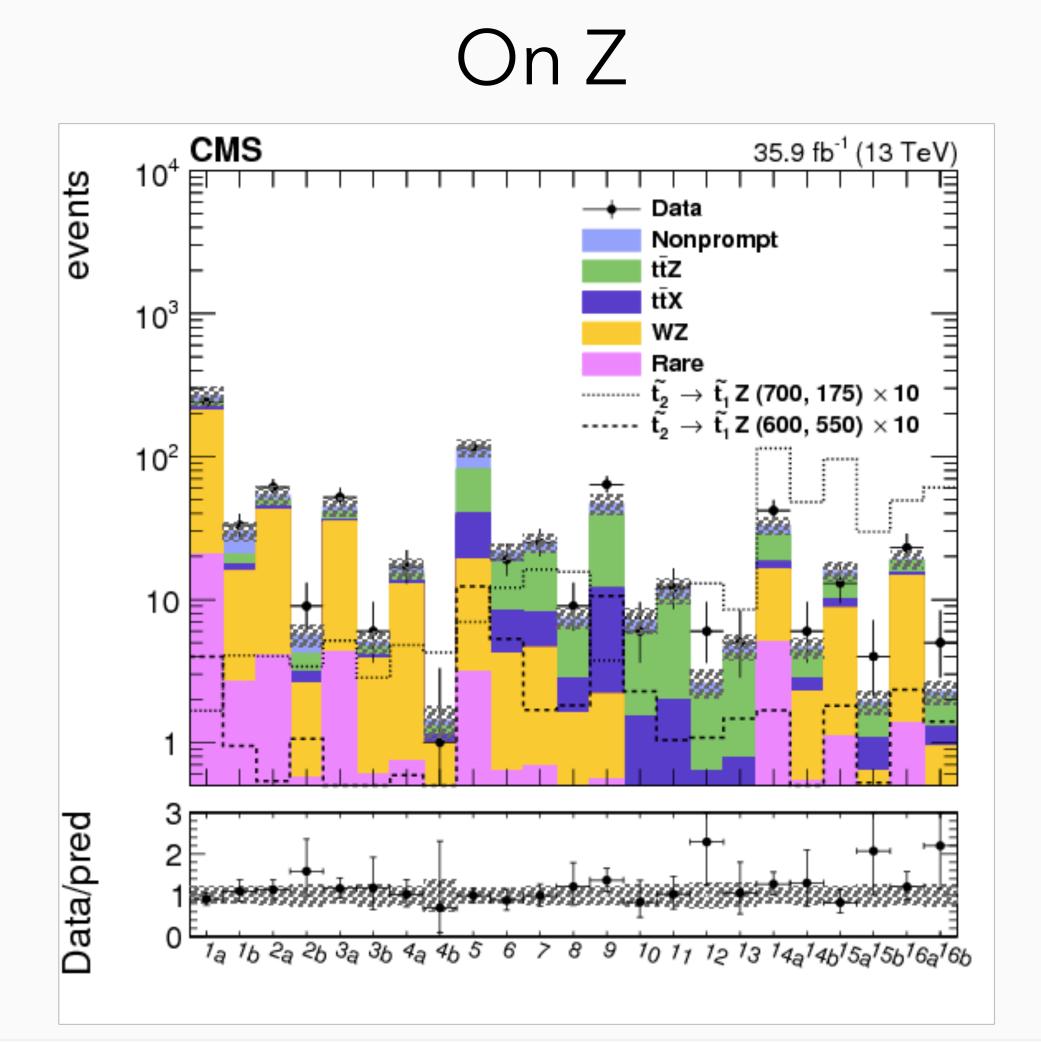
42



Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017

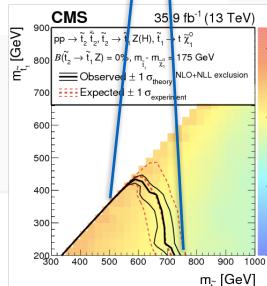
Multileptons: signal regions


$\geq 2 \begin{bmatrix} 0 & 60 - 400 & SR1 + & SR2 + \\ & 400 - 600 & SR3 + & SR4 + \\ 1 & 60 - 400 & SR5 & SR6 \\ 1 & 400 - 600 & SR7 & SR8 \\ 2 & 60 - 400 & SR9 & SR10 \\ & 400 - 600 & SR11 & SR12 \end{bmatrix} $		-				
$\geq 2 \begin{array}{ c c c c c c } & 0 & 400-600 & SR3 + & SR4 + \\ & 60-400 & SR5 & SR6 \\ & 400-600 & SR7 & SR8 \\ & 2 & 60-400 & SR9 & SR10 \\ & 2 & 400-600 & SR11 & SR12 \\ & \geq 3 & 60-600 & SR13 \end{array} $	Njets	N _{b jets}	H _T [GeV]	$50(70) \le p_{\rm T}^{\rm miss} < 150 { m GeV}$	$150 \le p_{\rm T}^{\rm miss} < 300 {\rm GeV}$	$p_{\rm T}^{\rm miss} \ge 300 { m GeV}$
$\geq 2 \begin{array}{ c c c c c c c c } & 400 - 600 & SR3 + & SR4 + \\ & 60 - 400 & SR5 & SR6 \\ 1 & 400 - 600 & SR7 & SR8 \\ 2 & 60 - 400 & SR9 & SR10 \\ 2 & 400 - 600 & SR11 & SR12 \\ & \geq 3 & 60 - 600 & SR13 & SR13 \end{array} $		0	60 - 400	SR1 †	SR2 †	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			400 - 600	SR3 t	SR4 †	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	60 - 400	SR5	SR6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	>2		400 - 600	SR7	SR8	CD16 +
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	2	60 - 400	SR9	SR10	SKIOT
			400 - 600	SR11	SR12	
inclusive >600 SR14 SR15 t		≥ 3 60 - 600		SR	13	
		inclusive	≥ 600	SR14 †	SR15 †	

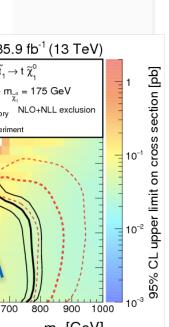


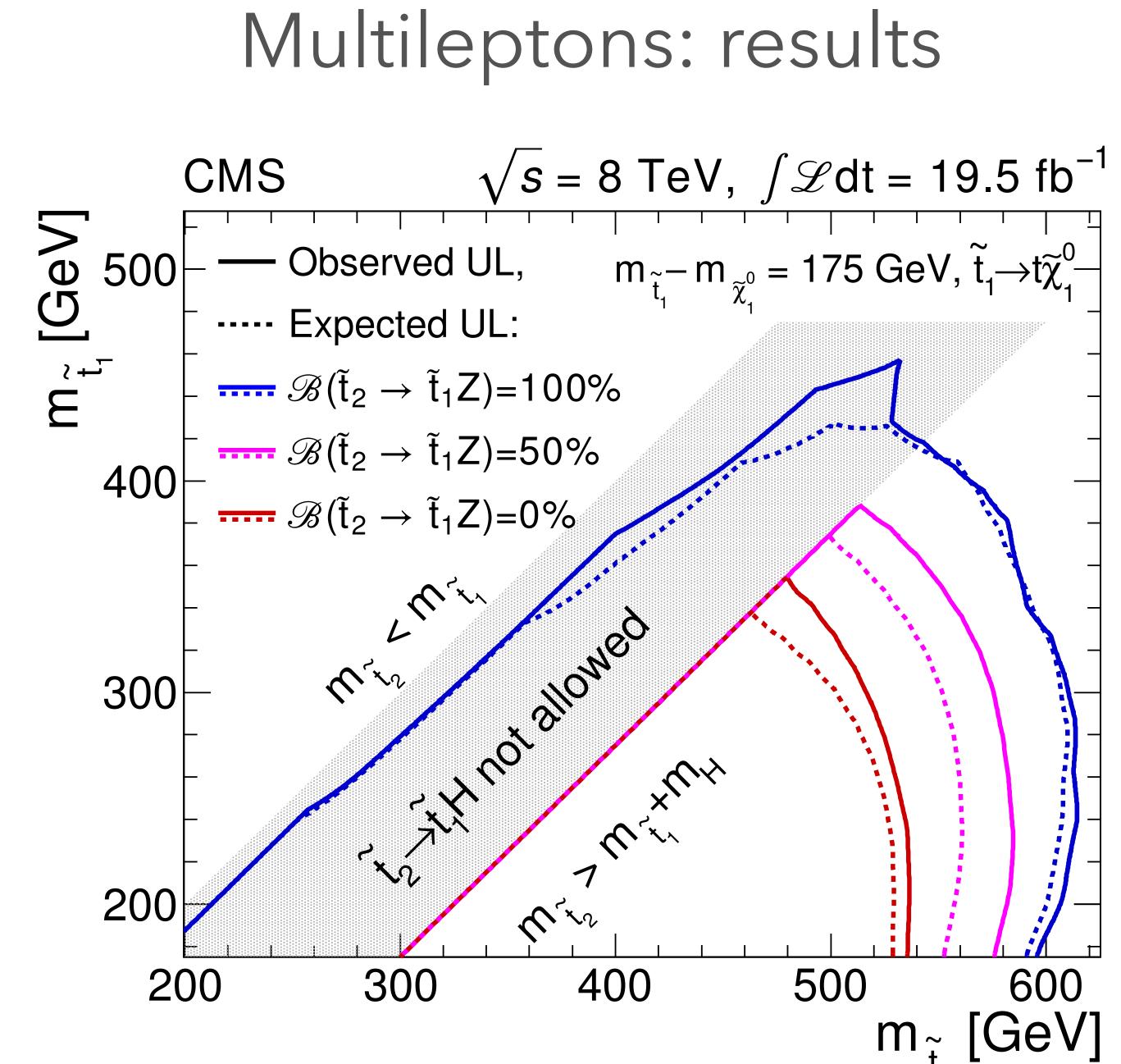
Multileptons: results

Off Z



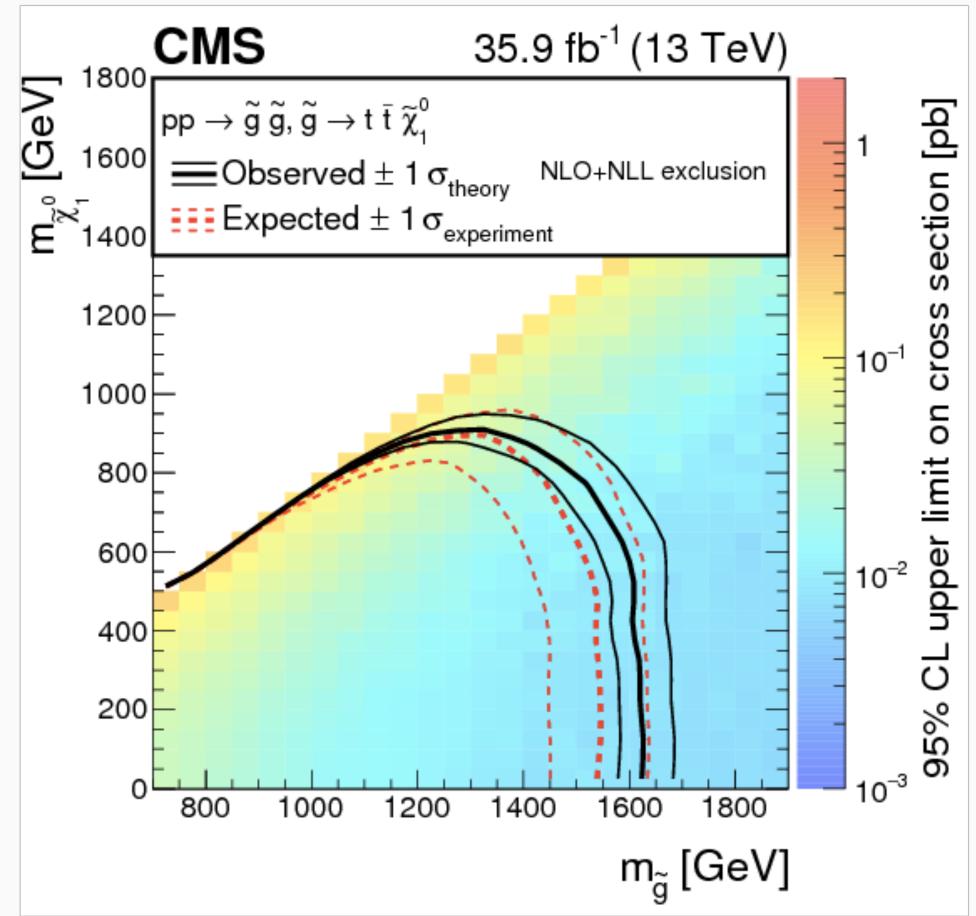
N _{b jets}	$H_{\rm T}$ [GeV]	$p_{\rm T}^{\rm miss}$ [GeV]	M _T [GeV]	Expected [events]	Observed [events]	SR		
		50-150	<120	$206\pm6\pm35$	201	SR1a		
	60-400	50-150	≥120	$1.4\pm0.5\pm0.2$	3	SR1		
	00-400	150-300	<120	$25.9 \pm 2.1 \pm 4.3$	24	SR2		
0		150-500	≥120	$0.84 \pm 0.34 \pm 0.12$	0	SR2		
0		50-150	<120	$15.6 \pm 1.6 \pm 2.1$	21	SR3		
	400-600	50-150	≥120	$0.19 \pm 0.09 \pm 0.02$	0	SR3		
	400-000	150-300	<120	$6.0\pm0.8\pm0.7$	5	SR4		
		150-500	≥120	$0.19 \pm 0.09 \pm 0.04$	0	SR4		
	60-400	50-150		$202\pm 6\pm 44$	191	SR:		
1		150-300	Inclusive	$25.6 \pm 1.9 \pm 4.6$	25	SR		
1	400-600	50-150	inclusive	$15.4 \pm 1.3 \pm 2.2$	21	SR		
		150-300		$7.3\pm1\pm1.1$	7	SR		
	60-400	60-400	60-400	50-150		$47.7 \pm 2.8 \pm 7.6$	51	SR
2	00-400	150-300	Inclusive	$5.3\pm0.5\pm0.6$	5	SR1		
2	400-600	50-150	inclusive	$5.8\pm0.7\pm0.8$	9	SR1		
	400-600	150-300		$2.9\pm0.5\pm0.4$	2	SR1		
≥3	60-600	50-300	Inclusive	$3.9\pm0.7\pm0.6$	6	SR1		
Inclusive		50 150	<120	$14.4 \pm 1.2 \pm 1.6$	20	SR14		
	≥600	50-150	≥120	$0.28 \pm 0.14 \pm 0.04$	0	SR1		
		2000 .	150-300	<120	$12.1 \pm 1.4 \pm 1.6$	10	SR1	
		150-500	≥120	$0.40 \pm 0.12 \pm 0.05$	0	SR1		
	≥60	>300	<120	$12.1 \pm 1.5 \pm 1.9$	7	SRL		
	200	2000	≥120	$0.70 \pm 0.25 \pm 0.11$	0	SR16		

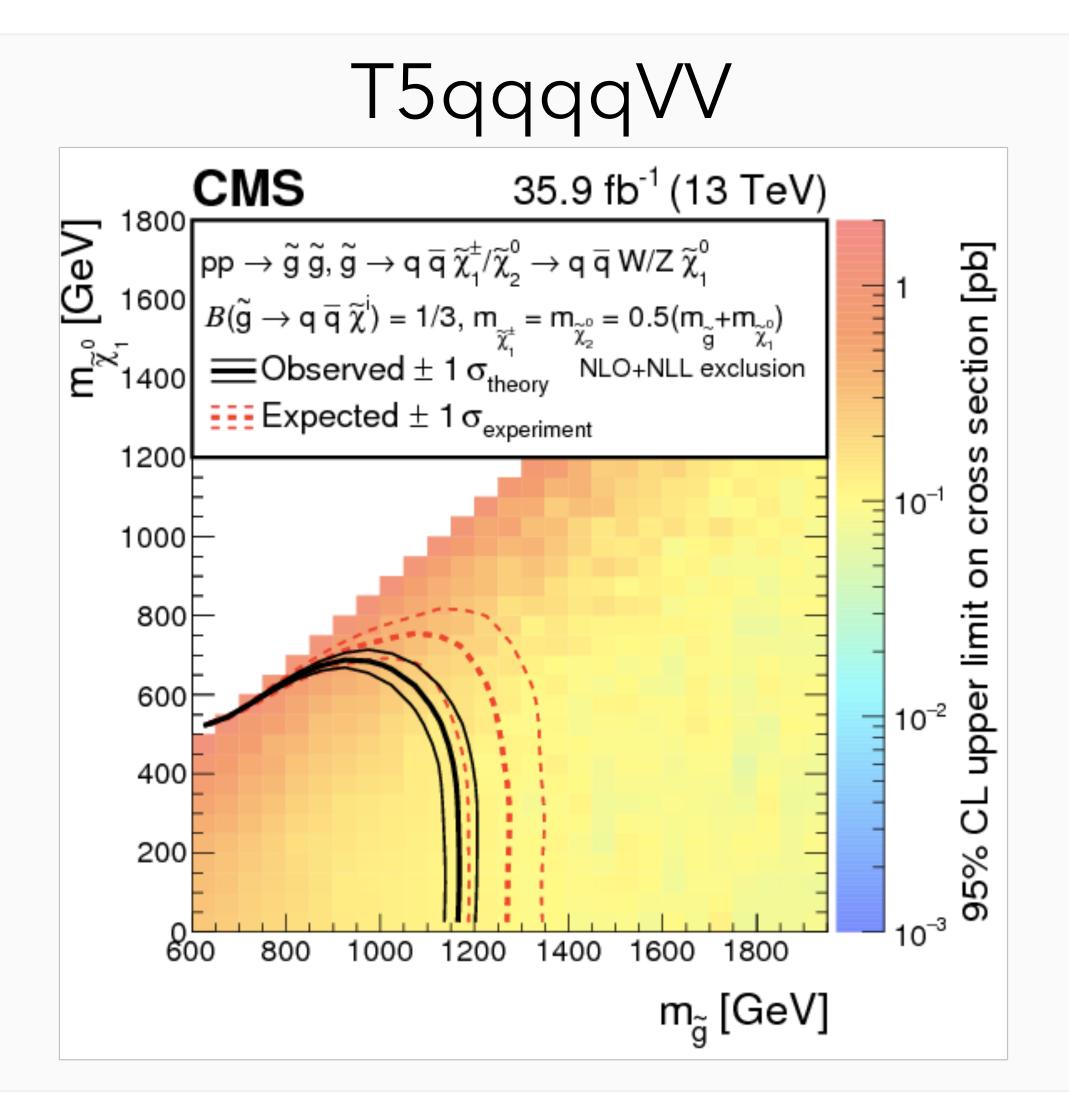

Off Z



Multileptons: results On Z

N _{b jets}	H_T [GeV]	$p_{\rm T}^{\rm miss}$ [GeV]	M _T [GeV]	Expected [events]	Observed [events	5] SR
		50-150	<120	$266\pm5\pm39$	241	SR1a
	60-400	50-150	≥120	$30\pm2\pm4$	33	SR1b
	00-100	150-300	<120	$53.8\pm2.2\pm8$	61	SR2a
0		150-500	≥120	$5.7\pm0.8\pm0.7$	9	SR2b
0		50-150	<120	$44.6 \pm 1.9 \pm 6.5$	52	SR3a
	400-600	50-150	≥120	$5.1\pm0.6\pm0.7$	6	SR3b
	400-000	150-300	<120	$16.6 \pm 1.3 \pm 2.5$	17	SR4a
		150-500	≥120	$1.43 \pm 0.33 \pm 0.2$	1	SR4b
	60,400	50-150		$116\pm4\pm15$	115	SR5
	60-400	150-300	The share the s	$21.7 \pm 1.2 \pm 2.8$	19	SR6
1	400 600	50-150	Inclusive	$25.2 \pm 1.2 \pm 3.6$	25	SR7
	400-600	150-300		$7.5 \pm 0.8 \pm 1$	9	SR8
	(0.100	50-150		$47\pm1.6\pm7.4$	64	SR9
2	60-400	150-300	The start second	$7.2 \pm 0.8 \pm 1.2$	6	SR10
2	100 (00	50-150	Inclusive	$11.7 \pm 1 \pm 2.1$	12	SR11
	400-600	150-300		$2.6 \pm 0.4 \pm 0.4$	6	SR12
≥3	60-600	50-300	Inclusive	$4.7\pm0.5\pm0.9$	5	SR13
		50 150	<120	$33\pm2\pm4$	42	SR14a
	><00	50-150	≥120	$4.6\pm0.6\pm0.6$	6	SR14b
nclusive	≥600	150 200	<120	$15.8 \pm 1.2 \pm 2$	13	SR15a
nciusive		150-300	≥120	$1.9 \pm 0.3 \pm 0.2$	4	SR15b
	> 60	>200	<120	$19.1 \pm 1.1 \pm 2.8$	23	SR16a
	≥60	≥300	≥120	$2.28 \pm 0.35 \pm 0.26$	5	SR16b
	$ \begin{array}{c} 35.9 \\ \rightarrow \tilde{t}_2 \ \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 \ Z(H), \ \tilde{t}_1 \rightarrow \tilde{t}_1 \\ \rightarrow \tilde{t}_1 \ Z) = 50\%, \ m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = \\ \hline \\$	175 GeV NLO+NLL exclusion ant 10 ⁻¹	95% CL upper limit on closs section [pb]		ر بو 45	CMS 35.9 f 900 $pp \rightarrow \tilde{t}_2 \ \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 Z(H), \tilde{t}_1 \rightarrow t \ \tilde{\chi}$ 800 $B(\tilde{t}_2 \rightarrow \tilde{t}_1 Z) = 100\%, m_{\tilde{t}_1} - m_{\tilde{\chi}_1} =$ $\blacksquare Observed \pm 1 \sigma_{theory}$ NLC 100 Expected $\pm 1 \sigma_{experiment}$ 600 500 400 300





Leonora Vesterbacka, SUSY17, Strong production of SUSY in leptonic final states, 11th December 2017 ETHzürich Multileptons: additional interpretation

T1tttt

Multileptons: systematics

Source	Effect on the backgrounds [%]	Effect on signal [%]
Integrated luminosity	2.5	2.5
JES	1–8	1-10
b tag efficiency	1-8	1-10
Pileup	1–5	1–5
Lepton efficiencies	9	15
HLT efficiencies	3	3
Nonprompt application region statistics	10-100	_
Nonprompt extrapolation	30	_
WZ control region normalization	10	_
ttZ control region normalization	25	_
Limited size of simulated samples	1-100	10-100
ISR modeling	_	1-10
Modeling of unclustered energy	_	1-20
Ren., fact. scales, cross section (tTW, tTH)	11-13	_
Ren., fact. scales, acceptance (tTW, tTZ, tTH, signal)	3-18	3-18
PDFs (ttW, ttZ, ttH)	2–3	_
Other rare backgrounds	50	_

