

Search for R-Parity Violating (RPV) Supersymmetry at CMS

Jae Hyeok Yoo (UC Santa Barbara) on behalf of the CMS Collaboration 12/11/2017 SUSY 17 in Mumbai, India

Why R-Parity Violating (RPV) SUSY?

Jae Hyeok Yoo (UCSB)

 Recent searches at LHC set stringent limits on R-parity conserving (RPC) models

- Tension in ability to explain hierarchy problem with little fine tuning
- A way to ease the tension: give up some assumptions, e.g., conservation of R-parity
- RPC searches require significant amount of MET due to undetected LSPs
- In RPV scenarios LSP can decay to SM particles → removes large MET signature
- This disfavors LSP as a DM candidate, but can weaken constraints from RPC searches

RPV SUSY in CMS

- RPV allows new interactions: lepton and baryon number violating interactions
- CMS has a preliminary result (<u>CMS-PAS-SUS-16-040</u>)
 - Will be submitted to arXiv soon
 - Similar search from ATLAS (JHEP09 (2017) 088)

Jae Hyeok Yoo (UCSB)

RPV SUSY in CMS

- Target gluino pair production where gluino decays to tbs (via UDD)
 - Motivated by minimum flavor violating SUSY which makes 3rd generation couplings large
- 1-lepton final state with large jet and b jet multiplicities and no MET requirement
 - Generic search sensitive to such high-mass signatures
- Backgrounds
 - tt (dominant), QCD, W+jets, and other (single top, Drell-Yan, di-boson, etc)
- Previous CMS result (<u>CMS-PAS-SUS-16-013</u>): mg<1360 GeV
 - $m_{\tilde{g}}$ of interest ~1500 GeV \rightarrow quarks from gluinos significantly boosted
 - Expect jets with a few hundred GeV of energy: allows to use fully efficient high H_T ($\Sigma p_{T,iet}$) trigger

Jae Hyeok Yoo (UCSB)

Jae Hyeok Yoo (UCSB)

SUSY 17 in Mumbai (12/11/2017)

Use three variables to distinguish signal from background: M_J, N_{jet} and N_b

Use three variables to distinguish signal from background: M_J, N_{jet} and N_b

• M_J: scalar sum of masses of large-R (R=1.2) jets

 To form a large-R jet, regular (R=0.4) jets and leptons are clustered together

- Use three variables to distinguish signal from background: M_J, N_{jet} and N_b
 - M_J: scalar sum of masses of large-R (R=1.2) jets
 - To form a large-R jet, regular (R=0.4) jets and leptons are clustered together

- Use three variables to distinguish signal from background: M_J , N_{jet} and N_b
 - MJ: scalar sum of masses of large-R (R=1.2) jets
 - To form a large-R jet, regular (R=0.4) jets and leptons are clustered together
 - $m(J_1)$

SUSY 17 in Mumbai (12/11/2017)

Jae Hyeok Yoo (UCSB)

Jae Hyeok Yoo (UCSB)

- Use three variables to distinguish signal from background: M_J, N_{jet} and N_b
 - M_J: scalar sum of masses of large-R (R=1.2) jets

SUSY 17 in Mumbai (12/11/2017)

Use three variables to distinguish signal from background: M_J, N_{jet} and N_b

Jae Hyeok Yoo (UCSB)

Use three variables to distinguish signal from background: M_J, N_{jet} and N_b

Analysis regions

N _{jet} Mj	4-5	6
500-800 GeV		
800-1000 GeV		
>1000 GeV		

Jae Hyeok Yoo (UCSB)

SUSY 17 in Mumbai (12/11/2017)

3 N_{jet} and 3 M_J bins with two high M_J bins merged for N_{jet}=4-5 due to limited size of data sample in the MJ>1000 GeV bin

Analysis regions

N _{jet} Mj	4-5	6-7	≥8		
500-800 GeV	CR	CR	SR		
800-1000 GeV		SR	SR		
>1000 GeV	UΚ	SR	SR most sensitive		

Jae Hyeok Yoo (UCSB)

SUSY 17 in Mumbai (12/11/2017)

Low N_{jet}, low M_J region used to validate the analysis procedure

Sensitivity driven by N_{jet}≥8 and M_J>1000 GeV bin

Analysis regions

Jae Hyeok Yoo (UCSB)

- N_b shapes for each process taken from simulation, but varied to assess potential mis-modeling
- Appropriate range measured in dedicated control samples

How the fit works

dedicated control samples

• tt normalization determined using the total yield in each (N_{jet}, M_J) bin (dominated by $N_b \leq 2$)

How the fit works

Jae Hyeok Yoo (UCSB)

dedicated control samples

• tt normalization determined using the total yield in each (N_{jet}, M_J) bin (dominated by $N_b \leq 2$)

- QCD normalization determined by 0-lepton region for each (N_{jet},M_J) bin
- 0-lepton region included in the simultaneous fit

How the fit works

dedicated control samples

• tt normalization determined using the total yield in each (N_{jet}, M_J) bin (dominated by $N_b \le 2$)

• QCD normalization determined by 0-lepton region for each (N_{iet},M_J) bin O-lepton region included in the simultaneous fit

Jae Hyeok Yoo (UCSB)

How the fit works

- by a global normalization low N_{jet} bins
- Drell-Yan sample

dedicated control samples

• tt normalization determined using the total yield in each (N_{jet}, M_J) bin (dominated by $N_b \leq 2$)

• QCD normalization determined by 0-lepton region for each (N_{jet},M_J) bin O-lepton region included in the simultaneous fit

Jae Hyeok Yoo (UCSB)

How the fit works

Uner

3

+ Data

tt

QCD

by a global normalization

dedicated control samples

• tt normalization determined using the total yield in each (N_{jet}, M_J) bin (dominated by $N_b \leq 2$)

• QCD normalization determined by 0-lepton region for each (N_{jet},M_J) bin O-lepton region included in the simultaneous fit

Jae Hyeok Yoo (UCSB)

SUSY 17 in Mumbai (12/11/2017)

How the fit works

- W+jets normalization determined by a global normalization low N_{jet} bins
- Drell-Yan sample

GS

Jae Hyeok Yoo (UCSB)

- Dominant background systematic uncertainty: modeling of gluon splitting (GS)
 - GS can produce additional b quarks, for example, tt+bb
- Sample
 - $N_{lep}=0, H_T>1500 \text{ GeV}, N_b=2, N_{jet}\geq4, M_J>500 \text{ GeV}$
- Use ΔR_{bb} as a proxy of GS
 - ΔR_{bb} : ΔR between two b-tagged jets

GSbb

Jae Hyeok Yoo (UCSB)

- Dominant background systematic uncertainty: modeling of gluon splitting (GS)
 - GS can produce additional b quarks, for example, tt+bb
- Sample
 - $N_{lep}=0, H_T>1500 \text{ GeV}, N_b=2, N_{jet}\geq4, M_J>500 \text{ GeV}$
- Use ΔR_{bb} as a proxy of GS
 - ΔR_{bb} : ΔR between two b-tagged jets
 - GS events populate low ΔR_{bb} region if both b quarks are tagged (GSbb)

GSb

Jae Hyeok Yoo (UCSB)

- Dominant background systematic uncertainty: modeling of gluon splitting (GS)
 - GS can produce additional b quarks, for example, tt+bb
- Sample
 - $N_{lep}=0, H_T>1500 \text{ GeV}, N_b=2, N_{jet}\geq4, M_J>500 \text{ GeV}$
- Use ΔR_{bb} as a proxy of GS
 - ΔR_{bb} : ΔR between two b-tagged jets
 - GS events populate low ΔR_{bb} region if both b quarks are tagged (GSbb)
 - GS events populate both low and high ΔR_{bb} regions if one of the b quarks is not tagged (GSb)

Jae Hyeok Yoo (UCSB)

- Dominant background systematic uncertainty: modeling of gluon splitting (GS)
 - GS can produce additional b quarks, for example, tt+bb
- Sample
 - $N_{lep}=0, H_T>1500 \text{ GeV}, N_b=2, N_{jet}\geq4, M_J>500 \text{ GeV}$
- Use ΔR_{bb} as a proxy of GS
 - ΔR_{bb} : ΔR between two b-tagged jets
 - GS events populate low ΔR_{bb} region if both b quarks are tagged (GSbb)
 - GS events populate both low and high ΔR_{bb} regions if one of the b quarks is not tagged (GSb)

Jae Hyeok Yoo (UCSB)

- Dominant background systematic uncertainty: modeling of gluon splitting (GS)
 - GS can produce additional b quarks, for example, tt+bb
- Sample
 - $N_{lep}=0, H_T>1500 \text{ GeV}, N_b=2, N_{jet}\geq4, M_J>500 \text{ GeV}$
- Use ΔR_{bb} as a proxy of GS
 - ΔR_{bb} : ΔR between two b-tagged jets
 - GS events populate low ΔR_{bb} region if both b quarks are tagged (GSbb)
 - GS events populate both low and high ΔR_{bb} regions if one of the b quarks is not tagged (GSb)
 - Non-GS events populate both low and high ΔR_{bb} regions (no GS)

Jae Hyeok Yoo (UCSB)

- Dominant background systematic uncertainty: modeling of gluon splitting (GS)
 - GS can produce additional b quarks, for example, tt+bb
- Sample
 - $N_{lep}=0, H_T>1500 \text{ GeV}, N_b=2, N_{iet}\geq4, M_J>500 \text{ GeV}$
- Use ΔR_{bb} as a proxy of GS
 - ΔR_{bb} : ΔR between two b-tagged jets
 - GS events populate low ΔR_{bb} region if both b quarks are tagged (GSbb)
 - GS events populate both low and high ΔR_{bb} regions if one of the b quarks is not tagged (GSb)
 - Non-GS events populate both low and high ΔR_{bb} regions (no GS)

Jae Hyeok Yoo (UCSB)

- Dominant background systematic uncertainty: modeling of gluon splitting (GS)
 - GS can produce additional b quarks, for example, tt+bb
- Sample
 - $N_{lep}=0, H_T>1500 \text{ GeV}, N_b=2, N_{jet}\geq4, M_J>500 \text{ GeV}$
- Use ΔR_{bb} as a proxy of GS
 - ΔR_{bb} : ΔR between two b-tagged jets
 - GS events populate low ΔR_{bb} region if both b quarks are tagged (GSbb)
 - GS events populate both low and high ΔR_{bb} regions if one of the b quarks is not tagged (GSb)
 - Non-GS events populate both low and high ΔR_{bb} regions (no GS)

Jae Hyeok Yoo (UCSB)

- Fit coarsely binned ΔR_{bb} distributions to get relative contributions of GS and no GS
 - Not rely on the details of ΔR_{bb} modeling
 - GSbb and GSb are combined in the fit because both are GS events
- Extracted weights
 - Fit extracted 25% less GS and 22% more non-GS components than simulation
 - Systematic uncertainty for GS modeling

Results: post-fit N_b distributions and exclusion limit

- Post-fit N_b distributions in two most sensitive bins
 - $M_J > 1000 \text{ GeV}$, $N_{iet} = 6-7$ (left) and ≥ 8 (right)

• Data is consistent with background-only fit

Results: post-fit N_b distributions and exclusion limit

Data is consistent with background-only fit

Excluded m² up to 1610 GeV

~250 GeV stretch wrt previous CMS preliminary result (CMS-PAS-SUS-16-013)

- RPV SUSY can evade the constraints from RPC SUSY searches by allowing LSP to decay to SM particles resulting in signatures without MET
- CMS performed a search in the single-lepton final state targeting gluino pair production where gluino decays to tbs
- No significant excess was observed and set the limit of 1610 GeV at 95% CL for gluino mass in this scenario

Jae Hyeok Yoo (UCSB)

Summary

backup

Jae Hyeok Yoo (UCSB)

O-lepton region used to constrain QCD in 1-lepton region

1-lepton

N _{jet} Mj	4-5	6-7	>=8
500-800 GeV	CR	CR	SR
800-1000 GeV		SR	SR
>1000 GeV	CK 	SR	SR most sensitive

Jae Hyeok Yoo (UCSB)

SUSY 17 in Mumbai (12/11/2017)

0-lepton N_{jet} 6-7 8-9 >=10 MJ CR CR SR 500-800 GeV SR SR 800-1000 GeV CR SR SR >1000 GeV most sensitive

Only normalization is used: Nb shape is not used

Systematic uncertainties

	CMS P	reliminary	٧s	s = 13 T	eV 20	
MC sample size	3.4	3.4	7.5	8.7		
Gluon splitting	2.4	1.3	6.7	14.7	-18	rtaint
b,c jet b-tag SF	1.3	0.8	3.8	6.0	-16	Jnce
u,d,s,g jet b-tag SF	 1.0	0.4	3.5	5.7	-14	
PDF	0.3	0.4	0.7	1.5	-12	
Lepton efficiency	0.1	0.3	0.2	0.1	-10	
Jet energy resolution	0.5	0.4	1.5	0.6	-8	
Jet energy scale	1.0	2.0	1.0	5.5	-6	
Renorm. and fact. scale	0.2	0.4	0.5	2.3		
Factorization scale	0.2	0.3	0.2	0.8	4	
Renormalization scale	 0.1	0.1	0.5	1.4	2	
	1	2	3	∟ ≥ 4	0	
				N _b		

 $N_{\text{jet}} \ge 8$ and $M_{\text{J}} \ge 1000$ GeV bin. SF in the label means scale factor.

Jae Hyeok Yoo (UCSB)

SUSY 17 in Mumbai (12/11/2017)

	CMS P	reliminary	٧s	<u>s</u> = 13 T	eV 20	
MC sample size	7.3	6.0	7.1	9.2	20	(%] /
Gluon splitting	0.3	0.1	0.4	1.2	-18	tainty
b,c jet b-tag SF	4.3	0.3	3.1	6.7	-16	Incer
u,d,s,g jet b-tag SF	1.0	0.6	0.4	2.1	-14	
PDF	5.7	4.0	6.2	7.2	-12	
Lepton efficiency	2.6	2.7	2.9	2.8	10	
Jet energy resolution	0.5	0.1	0.2	1.0		
Jet energy scale	2.5	1.4	3.8	4.4	-8	
Renorm. and fact. scale	0.7	0.8	0.6	0.7	-6	
Factorization scale	0.8	0.8	0.6	0.7	-4	
Renormalization scale	0.1	0.1	0.1	0.1	-2	
Initial state radiation	5.2	3.5	2.6	5.1		
	1	2	3	≥ 4	0	
				N _b		

Figure 3: Background (left) and $m_{\tilde{g}} = 1600 \text{ GeV}$ signal (right) systematic uncertainties on the

Post-fit yields

	5														
N_b	QCD	tī	W+jets	Other	All bkg.	Data	Expected $m_{\tilde{g}} = 1600 \text{ GeV}$								
	$4 \le N_{\rm iet} \le 5,\ 500 < M_I < 800 \ {\rm GeV}$								$6 \leq 1$	$N_{\rm jet} \leq 7$,	$800 < M_I < 10^{-1}$	1000 Ge	eV		
1	148	340	196	91	775 ± 43	777	0.50 ± 0.13	1	17.3	48.4	19.2	12.3	97 ± 8	105	1.2 ± 0.2
2	29	175	30	31	264 ± 17	264	0.39 ± 0.11	2	6.6	30.1	4.3	7.3	48 ± 4	37	2.0 ± 0.3
3	4.3	24.8	2.5	4.4	36 ± 4	34	0.18 ± 0.08	3	0.8	6.6	0.5	1.3	9.3 ± 1.0	12	1.0 ± 0.2
≥ 4	0.0	2.2	0.3	0.2	2.7 ± 0.4	3	0.04 ± 0.04	≥ 4	0.0	0.9	0.1	0.2	1.1 ± 0.2	2	0.31 ± 0.09
			4	$M \leq N_{\rm jet} \leq M_{\rm jet}$	$\leq 5, M_J > 800$) GeV		$N_{\rm jet} \ge 8,\ 800 < M_J < 1000 \ {\rm GeV}$							
1	16.5	26.3	22.5	11.0	76 ± 6	77	0.32 ± 0.11	1	17.0	58.7	10.3	10.2	96 ± 8	90	4.2 ± 0.4
2	1.1	10.6	3.4	3.8	19 ± 2	18	0.40 ± 0.12	2	5.8	47.5	2.5	6.8	63 ± 5	65	5.3 ± 0.4
3	0.7	1.3	0.3	0.3	2.7 ± 0.5	3	0.13 ± 0.06	3	1.1	15.0	0.4	2.0	19 ± 2	22	2.6 ± 0.3
≥ 4	0.00	0.09	0.03	0.01	0.13 ± 0.03	0	0.03 ± 0.03	≥ 4	0.2	3.4	0.1	0.9	4.6 ± 0.6	5	1.3 ± 0.2
$6 \le N_{\text{iet}} \le 7,500 < M_I < 800 \text{ GeV}$						eV				6	$\leq N_{\rm jet} \leq$	\leq 7, $M_J > 100$	0 GeV		
1	197	620	169	120	1106 ± 48	1105	2.5 ± 0.3	1	4.4	8.7	6.0	4.1	23 ± 2	21	2.0 ± 0.3
2	49	440	36	66	591 ± 21	588	3.1 ± 0.3	2	0.7	5.0	1.4	1.6	8.8 ± 1.2	11	2.3 ± 0.3
3	6.4	89.2	4.6	13.4	114 ± 8	112	1.4 ± 0.2	3	0.1	1.2	0.2	0.5	1.9 ± 0.3	2	1.0 ± 0.2
≥ 4	1.9	11.4	0.6	2.1	16 ± 2	21	0.25 ± 0.09	≥ 4	0.00	0.13	0.01	0.05	0.19 ± 0.04	0	0.23 ± 0.08
	$N_{\rm iet} > 8, 500 < M_I < 800 \text{ GeV}$										$N_{\rm jet} \ge 8$	$B_{J}, M_{J} > 1000$	GeV		
1	130	574	53	68	825 ± 38	821	3.5 ± 0.3	1	6.4	16.7	3.5	4.1	31 ± 3	28	5.4 ± 0.4
2	45	478	14	49	586 ± 20	603	5.4 ± 0.4	2	1.6	13.1	1.1	2.1	18 ± 2	21	8.2 ± 0.5
3	6.3	138.1	2.5	16.7	164 ± 9	148	3.0 ± 0.3	3	0.6	4.2	0.2	1.0	6.0 ± 0.8	5	5.7 ± 0.4
≥ 4	2.8	29.8	0.4	4.8	38 ± 4	40	1.4 ± 0.2	≥ 4	0.0	1.2	0.0	0.2	$ 1.4 \pm 0.3 $	2	3.2 ± 0.3
	1				1	1									

Table 1: Table of the post-fit yields for the background-only fit, observed data, and expected yields for $m_{\tilde{g}} = 1600$ GeV in each search bin.

Jae Hyeok Yoo (UCSB)

